
Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Vectorizing Database Column Scans with Complex
Predicates

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber
thomas.willhalm@intel.com, i.oukid@sap.com, ingo.mueller@kit.edu, franz.faerber@sap.com

August 26, 2013 / ADMS 2013

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 1 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

1 Introduction, Context, and Motivation

2 Vectorized Scan Framework
Overview
General Scan Algorithm
Optimizations

3 Evaluation

4 Conclusion and Outlook

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 2 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Introduction, Context, and Motivation

Traditional Architecture

Memory has become large
enough to contain all data.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 3 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Introduction, Context, and Motivation

In-memory Architecture

Keeping data in memory
allows faster access to data,
overcomes disk latency.

Backup is kept on storage.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 4 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Introduction, Context, and Motivation

Disruptive change in RDBMS industry

Rise of In-Memory Databases (IMDBs).

Anticipated by research 10+ years ago.

All major DB vendors are working on it.

SAP leading with HANA as platform for all new apps.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 5 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Introduction, Context, and Motivation

IMDBs often use Column-Orientation

Advantages of column-orientation:

Columns compressed
independently

Leverages better compression
Cache-friendly:

cache-line granularity
prefetching

SIMD-friendly

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 6 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Introduction, Context, and Motivation

“Dictionary” contains all distinct values (e.g. 100,000 entries)
ValueId are integers from 0, 1, 2 ,3, . . . ,100000
Max is N=100000 (number of distinct values), which needs 17
bits to represent ([log2N]+1)
Idea: instead of 32-bits, use 17-bits fields to store each ValueID.
We then call "17" the "Bit-case"
Accessing “Value” needs decompression into 32-bits

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 7 / 20



Introduction, Context, and Motivation

Compression building blocks: Bit-Fields

Packed bit-fields

Large number of integers, each with n number of bits



Introduction, Context, and Motivation

Compression building blocks: Bit-Fields

Packed bit-fields

Large number of integers, each with n number of bits

Example: 17-bit per entry:

32 different implementations for each n from 1 to 32.



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Introduction, Context, and Motivation

For each query do a full-table scan, i.e.,

Decompress required columns,

Aggregate data according to predicate,

Further processing.

Performance of unpacking is key for
full-table scans!

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 10 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Overview

We propose a framework for vectorized column scans with
complex predicates.

Different classes of predicates:
Range predicates
Vectorizable predicates
In-list predicates
Arbitrary predicates

Different output formats:
Bit vectors
Index vectors
Unpacked data

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 11 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Overview

We propose a framework for vectorized column scans with
complex predicates.
Different classes of predicates:

Range predicates
Vectorizable predicates
In-list predicates
Arbitrary predicates

Different output formats:
Bit vectors
Index vectors
Unpacked data

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 11 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Overview

We propose a framework for vectorized column scans with
complex predicates.
Different classes of predicates:

Range predicates
Vectorizable predicates
In-list predicates
Arbitrary predicates

Different output formats:
Bit vectors
Index vectors
Unpacked data

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 11 / 20



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator

Common scheme for all predicates and output formats

Extensible with templates

Vectorized processing of 8 values at a time (or more)

Manual optimizations of all paths and all bit cases



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator

Write to Buffer



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator

Range predicates (can express all the equality predicates, i.e., =,
6=, ≥, >, ≤, <)



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator

Many other predicates, including many arithmetic expressions on a
single column, can easily be expressed using vector instructions.

Example: In-list predicate.



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator

Fall-back mechanism, where a block of codewords is unpacked as
machine words into a buffer in cache, on which arbitrary predicates

can be applied.



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator

Store the different classes of results



Vectorized Scan Framework: General Scan Algorithm

shuffle

clean

align

buffer

compare

«vectorized
code»

«arbitrary
code»

extract
indices

extract
bits

store

next DB
operator

Unpack a colunm for the subsequent database operator.



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Optimizations can apply to a group of bit-cases. They can also be
specific to one bit-case

Bit-case level optimizations are performance critical

Reported 12 optimizations (refer to the paper)

Optimizations allow to compare up to 32 values in parallel

For In-list predicactes: "Permute" and "AvoidGather" are
necessary to achieve optimal performance.

Example: Scan algorithm for In-list predicate

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 13 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Optimizations can apply to a group of bit-cases. They can also be
specific to one bit-case

Bit-case level optimizations are performance critical

Reported 12 optimizations (refer to the paper)

Optimizations allow to compare up to 32 values in parallel

For In-list predicactes: "Permute" and "AvoidGather" are
necessary to achieve optimal performance.

Example: Scan algorithm for In-list predicate

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 13 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Optimizations can apply to a group of bit-cases. They can also be
specific to one bit-case

Bit-case level optimizations are performance critical

Reported 12 optimizations (refer to the paper)

Optimizations allow to compare up to 32 values in parallel

For In-list predicactes: "Permute" and "AvoidGather" are
necessary to achieve optimal performance.

Example: Scan algorithm for In-list predicate

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 13 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Optimizations can apply to a group of bit-cases. They can also be
specific to one bit-case

Bit-case level optimizations are performance critical

Reported 12 optimizations (refer to the paper)

Optimizations allow to compare up to 32 values in parallel

For In-list predicactes: "Permute" and "AvoidGather" are
necessary to achieve optimal performance.

Example: Scan algorithm for In-list predicate

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 13 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Optimizations can apply to a group of bit-cases. They can also be
specific to one bit-case

Bit-case level optimizations are performance critical

Reported 12 optimizations (refer to the paper)

Optimizations allow to compare up to 32 values in parallel

For In-list predicactes: "Permute" and "AvoidGather" are
necessary to achieve optimal performance.

Example: Scan algorithm for In-list predicate

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 13 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Optimizations can apply to a group of bit-cases. They can also be
specific to one bit-case

Bit-case level optimizations are performance critical

Reported 12 optimizations (refer to the paper)

Optimizations allow to compare up to 32 values in parallel

For In-list predicactes: "Permute" and "AvoidGather" are
necessary to achieve optimal performance.

Example: Scan algorithm for In-list predicate

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 13 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Search the values that are marked in a bitvector:
1 UNPACK
2 If corresponding bit is set
3 Mark bit in result bitvector

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 14 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Search the values that are marked in a bitvector:
1 UNPACK
2 If corresponding bit is set
3 Mark bit in result bitvector

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 14 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Search the values that are marked in a bitvector:
1 UNPACK
2 If corresponding bit is set
3 Mark bit in result bitvector

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 14 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Search the values that are marked in a bitvector:
1 UNPACK
2 If corresponding bit is set
3 Mark bit in result bitvector

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 14 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Search the values that are marked in a bitvector:
1 UNPACK
2 If corresponding bit is set
3 Mark bit in result bitvector

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 14 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 14 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Overview
General Scan Algorithm
Optimizations

Vectorized Scan Framework: Optimizations

Two AVX2 instructions are key to achieve the parallelization of the
Scan with in-list predicate algorithm:

Vector-vector shift instruction: The new vector-vector shift
instructions allows shifting each word of the AVX register with an
independant value. We use it to convert the values into words
where only the bit at the index equal to the value is set to 1.

Gather instruction: The new gather instructions loads elements
from memory based on a base address and offsets for each data
element. We use it to gather the different chunks of the predicate
relevant to vectorized comparison.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 15 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Unpack Performance
Scan Performance
Throughtput Overview

Evaluation: Unpack Performance

Bit cases have different
performances due to
different optimizations.

Example: bit case 16 is
trivially easy.

AVX2-Scan is 30% faster
than SIMD-Scan

Bit cases >16 are memory
bound.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 16 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Unpack Performance
Scan Performance
Throughtput Overview

Evaluation: Unpack Performance

Lemire’s reimplemation of
SIMD-Scan often matches
our performance, but we
found additional
optimizations.

Li’s reimplemantation
needs 5 cycles/codeword.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 17 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Unpack Performance
Scan Performance
Throughtput Overview

Evaluation: Scan Performance

Optimizations "Permute"
and "AvoidGather" work
very well for bitcases <= 8.

In these cases 4 times
faster than Scalar.

Bit cases >21 and >26 get
penalties from L2 and L3
cache misses for the
bit-vector predicate.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 18 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Unpack Performance
Scan Performance
Throughtput Overview

Evaluation: Throughtput Overview

AVX2-Scan consistently
30% faster than
SIMD-Scan.

Throughputs between 4
and 10 billion codewords
per second with peaks of
17 billion.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 19 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Conclusion and Outlook

Our scan framework, in particular the AVX2-Scan
implementation, is an effective means to improve scan
performance.

Intel has recently released the description of Intel AVX-512. Most
notable additions:

512 bit registers.
Mask registers.
Cross-lane shuffles.
Compress instruction.
Unsigned comparison.

It would be interesting to compare our approach with GPUs.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 20 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Conclusion and Outlook

Our scan framework, in particular the AVX2-Scan
implementation, is an effective means to improve scan
performance.
Intel has recently released the description of Intel AVX-512. Most
notable additions:

512 bit registers.
Mask registers.
Cross-lane shuffles.
Compress instruction.
Unsigned comparison.

It would be interesting to compare our approach with GPUs.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 20 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Conclusion and Outlook

Our scan framework, in particular the AVX2-Scan
implementation, is an effective means to improve scan
performance.
Intel has recently released the description of Intel AVX-512. Most
notable additions:

512 bit registers.
Mask registers.
Cross-lane shuffles.
Compress instruction.
Unsigned comparison.

It would be interesting to compare our approach with GPUs.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 20 / 20



Introduction, Context, and Motivation
Vectorized Scan Framework

Evaluation
Conclusion and Outlook

Conclusion and Outlook

Our scan framework, in particular the AVX2-Scan
implementation, is an effective means to improve scan
performance.
Intel has recently released the description of Intel AVX-512. Most
notable additions:

512 bit registers.
Mask registers.
Cross-lane shuffles.
Compress instruction.
Unsigned comparison.

It would be interesting to compare our approach with GPUs.

Thomas Willhalm, Ismail Oukid, Ingo Müller, Franz Faerber Vectorizing Database Column Scans with Complex Predicates 20 / 20


	Introduction, Context, and Motivation
	Vectorized Scan Framework
	Overview
	General Scan Algorithm
	Optimizations

	Evaluation
	Conclusion and Outlook

