
Skew Handling in Aggregate Streaming Queries on GPUs
∗

Georgios Koutsoumpakis
Uppsala University

Sweden

Iakovos Koutsoumpakis
Uppsala University

Sweden

Anastasios Gounaris
Dept. of Informatics
Aristotle University

Thessaloniki, Hellas

ABSTRACT

Nowadays, the data to be processed by database systems
has grown so large that any conventional, centralized tech-
nique is inadequate. At the same time, general purpose
computation on GPU (GPGPU) recently has successfully
drawn attention from the data management community due
to its ability to achieve significant speed-ups at a small cost.
Efficient skew handling is a well-known problem in paral-
lel queries, independently of the execution environment. In
this work, we investigate solutions to the problem of load
imbalances in parallel aggregate queries on GPUs that are
caused by skewed data. We present a generic load-balancing
framework along with several instantiations, which we ex-
perimentally evaluate. To the best of our knowledge, this
is the first attempt to present runtime load-balancing tech-
niques for database operations on GPUs.

1. INTRODUCTION
As the amount of data stored and processed in databases

increases dramatically, a lot of research effort is being put
in the development of advanced techniques that would al-
low database management systems (DBMSs) to deal with
extremely large data volumes more efficiently. Due to the
sheer amount of data mentioned above, when conventional,
centralized techniques are employed, the cost of processing
is raising, thus leading to unacceptable processing times. In
general, a DBMS query response time is affected by two
factors, namely the I/O cost, which is the time spent in
loading the data from the secondary storage into the main
memory, and the computational cost, the time spent by the
DBMS while processing the data. Traditionally, research
on databases has mostly focused on reducing the I/O cost
during query processing, since this is the major bottleneck
in many operations. However, the benefits of increasing the
system’s throughput cannot be ignored as well. So, in an

∗Research conducted while G. Koutsoumpakis and I. Kout-
soumpakis were with the Aristotle University of Thessa-
loniki.

effort to get the most of the database systems, processing
throughput should be maximized, and the most broadly es-
tablished approach to this end is through parallelism. One
of the most effective forms of parallelism in queries is par-
titioned parallelism; partitioned (or intra-operator) paral-
lelism refers to the case where multiple query operators si-
multaneously process distinct partitions of the same dataset
[7].

In this paper, we deal with partitioned queries but we
diverge from the conventional DBMS, and we focus on Con-
tinuous Query (CQ) systems [15, 23]. In contrast to tradi-
tional DBMSs that answer streams of queries over a non-
streaming database, CQ systems treat queries as fixed en-
tities and stream the data over them. This means that the
data are not known during the initialization of the query,
but new data become available during the execution, so the
data items are presented as a possibly infinite sequence of
records. Meanwhile, by utilizing a fixed-size sliding window
as it typically happens, we ensure that only the most recent
data elements are considered when answering queries. In
this way, the query results depend only on the latest and
most up to date data. CQs are particularly applicable to
streaming scenarios, where data is produced at such a fast
rate that it is not practical first to store the data and then
to process it; rather, data processing must be performed
on the fly. More specifically, we investigate parallel aggre-
gate queries over data streams, i.e., queries that split the
dataset into groups, and for each group continuously update
the value of an aggregate function leveraging the group-by
database operator [9]. E.g., in a stream of stock market
data, we can pose a query to continuously output the av-
erage price in the last one thousand transactions for each
stock. Such queries are essential in challenging, real-time
data-mining applications [11, 4].

An efficient way of increasing the computational capacity
can be achieved by taking advantage of the parallelization
capabilities and high computational power offered by mod-
ern graphics processing units (GPUs). This is commonly re-
ferred to as general purpose computing on GPUs (GPGPU).
Since GPUs are especially designed for stream processing
and provide free programmable processing cores, they are
well suited to be used for several database operations, for
example group-by query execution. Many-core technologies
like NVidia’s Compute Unified Device Architecture (CUDA)
and the associated Fermi hardware architecture [17, 16] that
have been built on top of GPUs simplify the development of
highly parallel algorithms running on a single GPU. In gen-
eral, a GPU can only execute algorithms for processing the

1

data, called kernels, while the corresponding control logic
is executed on the CPU. Previous research in the field has
led to the implementation of database management systems
that allocate data intensive tasks to the GPU. Examples of
such systems are Sphyraena [1] and GPUQP [12], which are
implementations of DBMSs for GPUs.

At the initialization of a CQ query, the query engine se-
lects a default configuration, which provides the settings
about how the query will execute among the graphics card’s
threads. Queries on a data stream will, by definition, run
long enough to experience changes in data properties as well
as system workload during their run. This implies that
workload imbalances among the threads may occur, caus-
ing bottleneck to the system if the workload assignment is
skewed, i.e., some processing units receive more work than
the others. In parallel aggregate queries, the main cause of
skewed execution is due to skewed data value distributions,
because the assignment of data groups to processing units
(which are GPU threads in our case) depends on data val-
ues, the distribution of which may be volatile. A continuous
query engine should adapt gracefully to these changes or
correct any bad initial workload assignments at runtime, in
order to ensure efficient processing over time. To this end,
runtime load balancing is employed, as data processing is
dynamically reassigned among the card’s threads.

In this paper, we investigate solutions to the problem of
skewed execution in aggregate queries on GPUs, where the
CPU and the GPU closely cooperate to achieve high per-
formance. More specifically, we present a load balancing
framework, where a load-balancing coordinator runs on the
CPU to decide the allocation of groups to threads, whereas
the execution of the query takes place on the GPU. Then, we
introduce a family of load-balancing policies that instantiate
the framework and we experimentally evaluate them. To the
best of our knowledge, this is the first attempt to present
runtime load-balancing techniques for database operations
on GPUs.

The remainder of this article is structured as follows: the
next section discusses the related work. Section 3 deals with
the runtime load-balancing architecture. The detailed ap-
proaches to load-balancing are presented in Sec. 4. In Sec-
tion 5, we evaluate the efficiency in skew handling for each
of the proposed approaches. We conclude in Section 6.

2. RELATED WORK
An increasing number of researchers and practitioners use

GPUs instead of CPU clusters for data- and computation-
intensive problems. The proposals that are most closely re-
lated to our work include those that refer to the development
of query processing techniques on GPUs. Although there are
several early efforts towards this research direction (e.g., [2]),
only recently fully-fledged query processing systems have ap-
peared. The two most prominent examples are SphyraEna
[1] and GPUQP [12, 13], which feature a fully functional
DBMS with the capability to execute queries on the GPU,
in order to benefit from its computing power. GPUQP pro-
vides a query engine where the queries (containing opera-
tors such as join, group-bys, and so on) run either entirely
on the GPU or, in some cases, on both the CPU and the
GPU. The database is not stored in the card’s memory, but
on the disk, as in conventional databases. When a query is
to be executed, the system employs techniques to estimate
the total cost, which includes data transfer to the GPU’s

memory and computational cost, and then to decide which
parts of the query plan should be allocated to the GPU. Our
work is different in the sense that we focus on a specific part
of queries, namely aggregate queries, and we deal with the
runtime load-balancing problem that is not considered by
systems such as Sphyraena and GPUQP.

In addition, the MapReduce programming framework has
emerged as an alternative environment for processing large
amounts of data [5]. MapReduce inherently supports aggre-
gate queries. The map phase splits data into groups, and
the reduce phase is responsible for computing the aggre-
gate function for each resulting group. An implementation
of the MapReduce paradigm on GPUs has been proposed
in [8]. Nevertheless, in MapReduce, no dynamic load bal-
ancing that modifies the allocation of reducers on the fly is
supported.

A load balancing proposal for GPUs has appeared in [3].
The setting assumed by this work is quite different from the
one in a streaming query though, since it relies on queues
holding tasks. Each processor maintains a queue that con-
tains the tasks to perform. When a task is carried out, it
is popped from the queue and the processor deals with the
next one. As a method of load balancing, when a proces-
sor is idle, it tries to steal tasks from the next processor’s
queue tail until all the tasks are completed. By contrast, in
our work we do not employ queues for tasks, but each data
group is assigned to a specific thread and decisions may be
revised in each iteration, as explained in the following sec-
tions. Note also that our work is orthogonal to proposals
that aim to fine tune GPUs in order to maximize perfor-
mance (e.g., [24]).

Concerning stream processing and load balancing in CQ
systems, a lot of available research material proposes meth-
ods for rebalancing data distribution to the processors [25,
22, 20, 21, 10, 23, 18]. Generally, the producer-consumer
model is applied, where producers simply perform the data
distribution and delegate the data processing to the con-
sumers, who are responsible for the execution of the pro-
cessing logic. Usually, the consumers do not have the same
throughput, and the slowest of them acts as a bottleneck to
the CQ system. Moreover, the data properties often change
with time, causing uneven allocation and the need to re-
define the query execution. In the Flux model [23], two
methods of load balancing are proposed: the short term
balancing method and the long term one. In the former
case, a buffer for each consumer ensures that no producers
will have to stay suspended until the consumer they want
to deal with finishes his former work. As this method is
inadequate for dealing with long term workload imbalances,
Flux introduces a mechanism for long term rebalancing us-
ing state transfer. As data is divided in small partitions and
distributed to the processors, when imbalance is detected, a
partition is dynamically relocated to another processor on
the fly. Flux techniques have been extended and improved
upon in [10, 18]. Our work can be deemed as a proposal for
techniques for long term imbalances in a GPU setting.

In general, techniques that modify the query execution at
runtime are commonly referred to as adaptive query pro-
cessing (AQP) ones [6]. AQP for CQs may have several
additional flavors. For example, the proposals in [15, 26] try
to effectively solve the load balancing problem by dynami-
cally changing the query execution plan. More specifically,
if multiple joins are being executed, the techniques devel-

2

oped change their order at runtime with a view to reducing
the total processing cost. Other adaptive proposals that re-
fer to CQs but do not deal with re-partitioning issues are
discussed in [14, 19].

3. OUR LOAD­BALANCING FRAMEWORK
In this section we describe the architecture and the high-

level approach to load balancing for aggregate queries on
GPUs; the exact balancing algorithms are presented in Sec-
tion 4. As the GPU is only suitable for executing kernels
and the logic of the program is administered by the CPU,
extensive collaboration between the two units is required.
The CPU is responsible (i) for preparing the data so that
coalesced memory access on the CUDA is enabled and (ii)
for detecting and correcting imbalances. The GPU takes
over the actual data processing. To this end, some auxiliary
structures on both processing units are created in an effort
to maximize the throughput of the system.

Throughout this paper, we consider a scenario where we
execute a group-by query over data that consist of two fields,
namely a group identifier id and an integer value attr. For
each new tuple, the aggregate function needs to process the
last attribute values received for each group identifier ac-
cording to a fixed sized window; i.e., the aggregate value
depends on the recent history of the stream. Although this
is a specific scenario, it possesses all the characteristics so
that it can easily be extended and generalized to further
demanding streaming aggregate queries.

3.1 Operations on the CPU
As the data arrives at the CPU as a stream, the processing

takes place in iterations. An example data and control flow
is shown in Figure 1. In each iteration, a fixed size batch
of tuples is processed, e.g., in the example in Figure 1 the
batch size is 50K. The CPU maintains two auxiliary struc-
tures that (i) map groups to specific GPU threads that will
process them and, (ii) map, in the reverse way, GPU threads
to groups (these structures are not shown in the figure). Us-
ing the former, it organizes the data in a matrix, which will
be later copied to the GPU’s global memory, in a way that
all the tuples of the groups allocated to the same thread will
be in adjacent memory slots to allow for coalesced memory
access; i.e., the matrix is not fully sorted. The Reordered
Data matrix in Figure 1 illustrates an example. This ma-
trix is produced in linear time, and more specifically, in two
passes. In the first pass, for each thread, we count the oc-
currences of the data items that belong to groups assigned
to that thread. This provides adequate information about
the exact places in the matrix, where each data item should
be placed, given that we know the mapping of groups to
threads. The actual placement takes place in the second
pass.

The CPU also utilizes an array that indicates where each
GPU’s thread should seek for its assigned data during the
kernel launch; this is called threadDataIndicator.

Before copying the data to the GPU and calling the kernel,
the skew handling techniques intervene, in order to investi-
gate whether any imbalance occurs. The rebalancing tech-
nique used might then propose a new mapping of a group to
a different thread. So, the group-to-thread mapping struc-
tures are continuously updated. However, since it is expen-
sive to revise the ordered data matrix and its associated

thread indicator array, the effects of the rebalancing take ef-
fect from the next iteration; in other words there is a delay
of one iteration in our skew handling approach.

At the end of each iteration, the Reordered Data matrix
and the threadDataIndicator array are copied to the GPU’s
global memory. At this point, the kernel is launched asyn-
chronously as a single CUDA stream. With the help of these
two data structures that are copied to the GPU, we ensure
that every thread will be capable of instantly locating the
data it is responsible for. Note that in GPGPU, each thread
can be uniquely identified in a straightforward manner.

While waiting for the GPU to finish with the processing of
the batch of tuples sent, the CPU prepares the next batch of
streaming data. As explained above, for the next batch, the
allocation of groups to threads will be based on the group-
to-thread mappings that have resulted from the previous
batch.

It is important to mention that, as verified also by our
experiments, the preparation time on CPU overlaps with
the more expensive GPU operations. When the grid size is
small, the overlap is full and thus the load-balancing over-
head is hidden. However, when the grid size increases, the
overlap is partial and the overhead has an impact on the
total running time.

3.2 Operations on the GPU
Upon receipt of a new batch of ordered tuples, each thread

starts processing tuples. To do so, it accesses only the rele-
vant data matrix cells (with the help of the threadDataIndi-
cator array). For each tuple, the GPU thread adds it to a
persistent data structure in the global memory that holds all
the windows for all groups. If the window is full, the oldest
tuple of the window has to be discarded. Overall, the auxil-
iary data structures on the GPU are: (i) a matrix structure
that keeps the windows for all the groups, (ii) an array that
maps each group to its window in the previous matrix, and
(iii) an array structure that contains pointers to the oldest
value of the window for each group (nextPos) (see Figure 2).
When the oldest tuple is replaced, the pointer moves to the
next cell in the same window.

To compute the aggregate function, each thread, for each
allocated group, processes all the tuples within the window.
When all the tuples have been processed, the kernel call
terminates. Note that no new kernel can be called before
termination. This implies that no data on the GPU are re-
placed with new data before their processing, thus ensuring
correctness. As shown by the experiments in the next sec-
tion, such an approach is not only capable of skew handling,
but can also increase the system throughput significantly.
However, there may still exist cases, where the data arrival
rate exceeds the GPU capacity; in that case, our proposal
needs to be complemented with load shedding and/or ap-
proximate techniques, which we leave for future work.

4. LOAD­BALANCING TECHNIQUES
As we have previously mentioned, the number of tuples

each thread has to process is calculated on the CPU be-
fore the kernel call. At that stage, it is easy to identify
imbalances. In all the re-balancing methods except the last
one, we follow the same pattern: we keep two heaps, a min
heap and a max heap, which contain information about the
most and least loaded threads, respectively (in O(1) time).
Then, we match the most and the least loaded thread into

3

Figure 1: High level data flow and CPU operations.

Figure 2: Auxiliary data structures on the GPU.

a pair. To indicate imbalance, we introduce a threshold of
tuple count difference. If the difference is above the thresh-
old, a group is moved from the most loaded thread to the
least loaded one, depending on the technique selected, and
the mapping structures are updated. Then, we execute the
same process for the new most and least loaded threads.
Since the number of this type of iterations may be high, the
choice of heap data structures is beneficial. The methods for

choosing the group that will be moved in case of imbalance
are explained below.

getFirst is the least sophisticated technique and requires
only small computation effort. The group to be moved is
the first one in the thread-to-group mapping structure. The
technique is given in Figure 3. In checkAll (see Figure 4),
the group to be moved is the one with the most appearances
in the thread. All the tuples of the thread in the current

4

Algorithm getFirst (~tpt, threadThreshold)
~tpt: a vector containing the number of tuples per thread,
threadThreshold: threshold to indicate imbalance

1. Find the thread with the highest number of tuples assigned tmax;
2. Find the thread with the lowest number of tuples assigned tmin;
3. While tpt[tmax]− tpt[tmim] > threadThreshold;
4. Assign the first group of thread tmax to the thread tmin;
5. Find the new tmax,tmin;
6. endWhile;

Figure 3: Outline of the getFirst algorithm.

Algorithm checkAll (~tpt, threadThreshold)
~tpt: a vector containing the number of tuples per thread,
threadThreshold: threshold to indicate imbalance

1. Find the thread with the highest number of tuples assigned tmax;
2. Find the thread with the lowest number of tuples assigned tmin;
3. While tpt[tmax]− tpt[tmim] > threadThreshold;
4. Read the tuples of thread tmax and find the group with the most occurrences;
5. Assign that group to the thread tmin;
6. Find the new tmax,tmin;
7. endWhile;

Figure 4: Outline of the checkAll algorithm.

Algorithm probCheck (~tpt, threadThreshold, pot)
~tpt: a vector containing the number of tuples per thread,
threadThreshold: threshold to indicate imbalance,
pot: thepercentage of thread’s tuples that the to-be-reassigned group has to cover

1. Find the thread with the highest number of tuples assigned tmax;
2. Find the thread with the lowest number of tuples assigned tmin;
3. While tpt[tmax]− tpt[tmim] > threadThreshold;
4. ngroups = number of groups assigned to tmax;
5. limit = pot ∗ tpt[max]/ngroups;
6. Read the tuples of thread tmax and stop when a group appears limit times;
7. Assign that group to the thread tmin;
8. Find the new tmax,tmin;
9. endWhile;

Figure 5: Outline of the probCheck algorithm.

batch have to be scanned, in order to count the group ap-
pearances. Then, the most frequent group is selected and
remapped with a view to correcting the imbalance faster
than the previous technique.

probCheck is as an approximate version of checkAll, which
tries to locate the most common group without having to
scan all the tuples. To manage this, it first calculates the
average number of tuples in the groups of the most loaded
thread. Then, it selects the first group detected with fre-
quency equal to pot times that average value (0 < pot ≤ 1).
The higher pot is, the higher the chance is the most common
group will be selected at the expense of increased data scan-
ning cost; however, the scanning cost is always less than the

cost of scanning all the thread’s tuples. probCheck is shown
in Figure 5.

The algorithms thus far make simple choices as to which
groups should be allocated to other threads. Neither random
choices nor selecting the most frequent group can guaran-
tee that the imbalance will be eliminated across all threads.
bestBalance tries to address this limitation and detects the
group that, if remapped, will achieve the best balance be-
tween the two corresponding threads. To achieve this, it
scans all the tuples assigned to the most loaded thread,
counting the appearances of each group. Then, it chooses
the group that minimizes the difference in the workload, as
shown in Figure 6.

5

Algorithm bestBalance (~tpt, threadThreshold)
~tpt: a vector containing the number of tuples per thread,
threadThreshold: threshold to indicate imbalance

1. Find the thread with the highest number of tuples assigned tmax;
2. Find the thread with the lowest number of tuples assigned tmin;
3. While tpt[tmax]− tpt[tmim] > threadThreshold;
4. Read the tuples of thread tmax and find the group that, if swapped, minimizes tpt[tmax] − tpt[tmin];
5. Assign that group to the thread tmin;
6. Find the new tmax,tmin;
7. endWhile;

Figure 6: Outline of the bestBalance algorithm.

Algorithm shift (~tpt, threadThreshold)
~tpt: a vector containing the number of tuples per thread,
threadThreshold: threshold to indicate imbalance

1. Find the thread with the highest number of tuples assigned tmax;
2. Find the thread with the lowest number of tuples assigned tmin;
3. While tpt[tmax]− tpt[tmim] > threadThreshold;
4. if tmax > tmin
5. foreach thread i ∈ (tmin, tmax]
6. Move the first group from thread i to the thread i− 1;
7. else

8. foreach thread i ∈ [tmax, tmin)
9. Move the last group from thread i to the thread i+ 1;
10. Find the new tmax,tmin;
11. endif

12. endWhile;

Figure 7: Outline of the shift algorithm.

Algorithm shiftLocal (~tpt, threadThreshold)
~tpt: a vector containing the number of tuples per thread,
threadThreshold: threshold to indicate imbalance

1. foreach thread i
2. if tpt[i]− tpt[i+ 1] > threadThreshold;
3. Move the last group from thread i to the thread i+ 1;
4. else if tpt[i+ 1]− tpt[i] > threadThreshold;
5. Move the first group from thread i+ 1 to the thread i;

Figure 8: Outline of the shiftLocal algorithm.

The last two methods aim to further benefit from coa-
lesced memory access. More specifically, the shift method
inserts a locality criterion in the skew handling according to
which the groups are not moved directly from one thread
to another, but only to the neighboring one. There are two
cases: if the loaded thread has a smaller id number than the
emptier one, then each thread in the range [loaded, unloaded)
has its last group assigned to the next thread. Consequently,
the loaded thread will have to process one group less, while
the least loaded one is now assigned with some extra load.
The same happens if the loaded thread has a bigger id, only
the other way around (see Figure 7).

shiftLocal does not rely on the detection of the most and
least loaded threads, thereafter it does not require the two
heaps. shiftLocal only fixes imbalances among neighboring
threads. It compares each thread’s load to the next one’s,
using an appropriate threshold factor, and properly moves
the last or first group to the less loaded thread (see Figure
8).

5. EVALUATION
In this section, we evaluate the efficiency and the effec-

tiveness of our approach to skew handling. We focus on

6

both performance improvements and the associated over-
heads. For completeness, we examine scenarios with no, low
and high imbalance.

5.1 Experimental Setting
For the purpose of our experiments, two different sys-

tem configurations supporting the Fermi architecture are
used: the first system (referred to as PC1) has an Intel
Core2 Duo E6750 CPU at 2.66GHz and an NVidia 460GTX
(GF104) graphics processor at 810 Mhz on a PCIe v2.0 x16
slot (5GB/s transfer rate). PC2 has an Intel P4 550 CPU,
running at 3.4 Ghz. Also, it has an NVidia 550GTX Ti
(GF116) at 910 MHz, which is installed on a PCIe v1.1 x16
(2.5GB/s transfer rate) slot. In both cases, our techniques
have been developed using the NVidia Parallel NSight 2.1
platform. The two configurations are appropriately selected
to favor the investigation of the relative performance of both
(i) a system with slower CPU but more powerful GPU and
(ii) a system with a faster CPU but slower GPU.

Also, we experiment with three datasets, namely DS1,
DS2 and DS3. DS1 consists of unskewed data. It comprises
100M tuples, assigned to 40000 groups in a round robin way,
so that the allocation of tuples to groups follows a uniform
distribution. This dataset does not require any runtime bal-
ancing and is used for comparison purposes. DS2 follows a
zipf distribution. It consists of 100M tuples as well. In DS2
the group ids are assigned in such a way that a group with
id equal to y is more frequent than the groups with id z, if
z > y. Finally, DS3 is a randomly permuted version of the
DS2, so that the group ids are not in decreasing order of
frequency.

In each iteration, the batch of tuples consists of 50K tu-
ples. As such, in our experiments, the processing finishes
after 2,000 iterations for all datasets, but the results can be
transferred to infinite streams as well. The size of the sliding
window that needs to be maintained for each group is 100
tuples, and, initially each thread receives an equal number of
groups with consecutive group ids. After every new tuple is
copied to the appropriate window of a group, the complete
window is scanned and its sum is calculated from scratch
thus simulating a demanding data analysis task. When ex-
ecuting the kernel, we set the block size to 256 threads, but
we vary the grid size. The threadThreshold value is set to
1000. For the probCheck method, the pot parameter is set to
0.5, which was experimentally found as the optimal value.
All experiments were conducted three times and the average
value is presented. The standard deviation is depicted when
it is not negligible; in general it is very small.

5.2 Experiments

5.2.1 Performance degradation due to imbalance

We start our experiments by showing the detrimental ef-
fects of not performing load balancing when data is skewed.
In Figure 9, the left column that corresponds to DS1 demon-
strates the performance of our aggregation operator in the
optimal case: dynamic balancing is neither needed nor per-
formed (i.e., there is no overhead). However, for DS2, if
no balancing technique is activated, the execution time in-
creases by an order of magnitude, even if the total size to
be processed remains the same. This is because only a
few threads are burdened with the majority of the process-
ing, while the others remain idle. In the case of DS3, al-

DS1 DS2 DS3
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Figure 9: Comparison of execution without load-
balancing in PC1 for grid size 4.

though the allocation of tuples in groups is still skewed, the
most common groups are randomly distributed among the
threads, rather than being allocated to the first ones, so the
overall increase in the execution time is smaller compared
to DS2. In general, DS2 is regarded as a scenario, where the
imbalance is high, and DS3 corresponds to a scenario with
lower imbalance.

5.2.2 Performance improvements

In Figure 10, we present the evaluation results of the six
methods of skew handling that were discussed in Section 4
for DS2 (high imbalance), and we compare them against the
case where we do not perform load balancing. As expected,
runtime skew handling results in considerable improvement
in the execution of parallel aggregate queries execution, since
the workload is more evenly distributed among the graphic
card’s processor units. However, as indicated in the fig-
ures, not all the methods can achieve the same improve-
ment. More specifically, shift and shiftLocal are inferior to
the other four methods for this dataset. This is due to the
fact that, while these methods handle the rebalancing by
moving groups to neighboring threads, in the DS2 dataset,
the major amount of tuples is distributed among the first
threads. Therefore, in order to maintain an acceptable level
of balance, shift and shiftLocal require many iterations in
order to fix the imbalance.

Comparing the other methods, we can draw the follow-
ing observations: probCheck is slightly more effective than
checkAll, as it chooses faster, albeit in a probabilistic man-
ner, the optimal group to move, without having to consider
all the tuples of the stream. On the other hand, the bestBal-
ance method guarantees the optimal solution for the skew
handling problem in terms of equalizing the workload among
GPU threads. This implies that it requires the least group
repartitioning effort in future batches. Nevertheless, as the
balancing decisions are enforced after one round, where the
conditions might have changed, and the demand for CPU
processing time in order to compute the best solution in-
creases, in most of the cases, the execution time of bestBal-
ance is slightly higher than those of getFirst, checkAll and
probCheck. Interestingly, as getFirst arbitrarily moves the
first group of the most loaded thread, it cannot deal with se-
vere imbalances successfully in a few rebalancing iterations,

7

getFirst checkAll probCheck bestBalance shift shiftLocal no−balance
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ili
s
e
c
o
n
d
s

PC1

PC2

getFirst checkAll probCheck bestBalance shift shiftLocal no−balance
0

2000

4000

6000

8000

10000

12000

14000

16000

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ili
s
e
c
o
n
d
s

PC1

PC2

Figure 10: Comparison of execution time of load-balancing methods for DS2 (high imbalance) with grid size
4 (left) and 64 (right).

High Imbalance (DS2) Low Imbalance (DS3)
Technique PC1 PC2 PC1 PC2

getFirst 4.26 3.76 0.97 0.97
checkAll 4.20 3.78 1 0.89

probCheck 4.27 3.79 1 1

bestBalance 4.20 3.75 1 0.9
shift 1.96 1.91 1.01 0.99

shiftLocal 2.14 2.04 0.99 1

no balance 1 1 1 1

Table 1: Normalized throughput (tuples processed
in time units) for grid size 4.

High Imbalance (DS2) Low Imbalance (DS3)
Technique PC1 PC2 PC1 PC2

getFirst 1.98 1.4 0.93 0.81
checkAll 1.9 1.27 0.93 0.76

probCheck 1.9 1.35 0.93 0.8
bestBalance 1.9 1.26 0.93 0.77

shift 1.3 1.28 0.97 0.82
shiftLocal 1.27 1.21 1 0.99

no balance 1 1 1 1

Table 2: Normalized throughput (tuples processed
in time units) for grid size 64.

but because of its low overhead, it leads to competitive query
execution time.

As mentioned earlier, DS2 corresponds to a scenario with
high imbalance. In DS3, the imbalance is lower, and also,
the loaded threads may have arbitrary ids. We repeat the
same experiment for DS3, and the results appear in Figure
11. There are two main observations: firstly, no load bal-
ancing technique is actually effective, and secondly, shift and
shiftLocal behave similarly if not better than the rest of the
techniques.

The normalized results are summarized in Tables 1 and 2,
where the value 1 corresponds to the throughput of the no
balance technique in each setting. When the imbalance is
high, probCheck dominates all the other rebalancing options
in terms of performance for small grid sizes. In those cases,
the speed up is more than 4 times. When the grid size is
increased, the best performing technique is getFirst, which
nearly doubles the throughput. So, we can deduce that less

sophisticated and approximate load balancing techniques,
which require less computational effort for the balancing
itself, are more appropriate for GPGPU in highly skewed
environments. When the imbalance is low, the maximum
speedup is negligible for grid size set to 4, and shift and
shiftLocal seem more appropriate. When we further increase
the grid size, the throughput may degrade. We also discuss
the impact of the grid size in more detail later.

Finally, as mentioned before, the time spent in load bal-
ancing on the CPU may be hidden by the time spent in
GPU execution and data transfer. This holds for the case
where the grid size is set to 4. When we set the grid size to
64, the CPU-based data preparation partially overlaps with
the GPU-based aggregate computation, and, as a result, the
preparation overhead affects the performance.

5.2.3 Overhead

To further investigate the overhead incurred by maintain-
ing the auxiliary structures and performing the rebalancing
computations, in Figure 12, we show the increase in the to-
tal time required when we let the skew handling techniques
to unnecessarily investigate possible rebalancing actions; to
this end we use DS1. From the figure, we can observe that
simply enabling any of the methods has an impact on the
performance, which is more evident with increased grid sizes.
Actually, the overhead is negligible for the small grid size,
where the CPU cost is fully hidden by the GPU processing.
In addition, shiftLocal is the technique with almost negligi-
ble overhead for any combination of system and grid size;
this is attributed to the fact that it does not utilize heap
structures for finding the most and least loaded groups.

5.2.4 More on the effect of grid size

The grid size, as evidenced in all the performance figures
thus far, is an important parameter that affects the perfor-
mance. By increasing the grid size, we increase the number
of threads produced in the card. Consequently, the number
of groups to be processed by a thread is reduced. As a result,
the odds of having a thread, which gathers many overloaded
groups decrease; in other words, imbalance effects are indi-
rectly mitigated through increased grid sizes. Thus, a larger
grid size leads to shorter processing time, as much fewer

8

getFirst checkAll probCheck bestBalance shift shiftLocal no−balance
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ili
s
e
c
o
n
d
s

PC1

PC2

getFirst checkAll probCheck bestBalance shift shiftLocal no−balance
0

2000

4000

6000

8000

10000

12000

14000

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ili
s
e
c
o
n
d
s

PC1

PC2

Figure 11: Comparison of execution time of load-balancing methods for DS3 (low imbalance) with grid size
4 (left) and 64 (right).

getFirst checkAll probCheck bestBalance shift shiftLocal no−balance
0

500

1000

1500

2000

2500

3000

3500

4000

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
ili

s
e

c
o

n
d

s

PC1

PC2

getFirst checkAll probCheck bestBalance shift shiftLocal no−balance
0

1000

2000

3000

4000

5000

6000

7000

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
ili

s
e

c
o

n
d

s

PC1

PC2

Figure 12: Comparison of execution time of load-balancing methods for DS1 (no imbalance) with grid size 4
(left) and 64 (right).

threads will run for very long time acting as a bottleneck.
Taking advantage of the very low thread scheduling time
offered by the Fermi architecture, we experience reduced to-
tal times, even without any of the skew handling techniques
enabled. However, increasing the grid size makes sense only
when there is at least one group in the aggregate query per
thread. In our case, where we have 40K groups, this has
proved to be not a problem, but in several other scenarios
the total number of groups in the aggregate query may be a
few hundreds, which necessitates smaller grid sizes because
larger grid sizes are simply not applicable in those scenarios.

Moreover, if we increase the number of threads over a cer-
tain point, we reach a saturation point where there is no
more benefit. This is due to the fact that the CPU, which
maintains the structures that keep data for the thread load
factor, now needs more time to process them. Consequently,
the total execution time cannot be reduced under a limit,
and in some cases the additional CPU effort might outweigh
the benefit. Only in the case of shiftLocal, which does not
need those extra structures and computations, the surcharge
is small. Additionally, we notice that the shift method also

benefits from the decrease of groups per thread due to in-
creased grid size, as it has higher chances to achieve accept-
able balance.

Figure 13 shows the impact of the grid size on the run-
ning time for DS2 being executed on PC1. We can observe
that, by increasing the grid size, we can alleviate high imbal-
ances, although we cannot eliminate them, since the differ-
ence between no balancing and balancing schemes decreases
significantly but it never becomes negligible. For shift and
shiftLocal, the saturation point is much earlier, whereas all
the other techniques are insensitive to the grid size.

5.2.5 CPU vs GPU

Additionally, in order to demonstrate the power of the
GPU processing, we implemented a simple CPU-based group
by algorithm. There, as the data is not distributed among
threads but handled serially, no skew handling is needed and
the total throughput is the same in all datasets of equal size.
The execution times are presented in the Figure 14. Com-
pared with the running times in Figures 10-12, it is evident
that employing the GPU is always beneficial. For example,

9

0 20 40 60 80 100 120 140 160
0.5

1

1.5

2

2.5

3

3.5
x 10

4

grid size

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ili
s
e
c
o
n
d
s

getFirst

checkAll

probCheck

bestBalance

shift

shiftLocal

no balance

Figure 13: The effect of changing the gridsize in DS2
(PC1).

PC1 PC2
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
ili

s
e

c
o

n
d

s

Figure 14: Execution time in CPU.

in DS2, the running time using the GPU can be as low as
approximately 8 secs for both systems, whereas it is more
than 10 and 16 secs when we use only the CPU of PC1 and
PC2, respectively. The performance benefits are larger for
DS1 and DS3.

5.2.6 Further experiments and discussion

In our last experiment, we investigate adding some extra
load: we assume an aggregate function that checks the win-
dow elements 10 times instead of one per window update.
Despite the fact that modern graphics cards are alleged to
perform much better than the CPU on processing numeric
and double precision data, rather than on accessing data
from the card’s global memory for a simple summing com-
putation, their superiority and capability to yield improved
performance is obvious in Figure 15.

Finally, as evidenced in the figures, there is no clear win-
ner between the two systems. PC2, owing to the faster and
more powerful graphics processing unit, proved to be faster
in some cases were the majority of computation happens in
the GPU. DS2 is such a case, where the imbalance among
the threads acts as a bottleneck, and the CPU processing
time is negligible compared to the GPU processing. Also,

getFirst checkAll probCheckbestBalance shift shiftLocal no−Balance CPU−only
0

1

2

3

4

5

6
x 10

4

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ili
s
e
c
o
n
d
s

PC1

PC2

Figure 15: Performance comparison when there is a
10-fold increase in the window passes for DS2 (the
grid size is 4).

PC2 benefits from the smaller grid sizes that require less
CPU effort in order to handle the corresponding structures.
Meanwhile, PC1 outperforms PC2 in the case of bigger grid
sizes, where the need for skew handling is decreased, as ex-
plained earlier.

6. CONCLUSIONS
In this work, we dealt with the problem of skewed ex-

ecution in aggregate queries on GPUs. We presented a
generic load balancing framework along with specific bal-
ancing techniques. The lessons learnt can be summarized as
follows: Firstly, we can significantly reduce execution time
with the help of GPUs. In our experiments, we observed
significant speed-ups up to 4 times and verified the fact that
load imbalances can lead to serious performance degrada-
tions thus necessitating load balancing actions in order to
avoid performance degradation. Secondly, the techniques
we proposed are both efficient and effective; their efficiency
is due to their low overhead, whereas their effectiveness is
manifested through their capability to lead to throughput
improvements in highly skewed scenarios. Interestingly, less
sophisticated and approximate techniques exhibit superior
performance, because the increased overhead of more sophis-
ticated solutions outweighs any benefits and/or load balanc-
ing decisions are enforced with a delay of one round, where
the exact conditions may have changed anyway. When small
imbalances are experienced, no balancing technique behaves
well. Finally, increasing the grid size mitigates the effect
of skewed executions, but it is not always applicable in ag-
gregate queries. Overall, this work aims to provide use-
ful insights into the behaviour of rebalancing techniques for
GPU-assisted data management.

Potential avenues for future work include the investigation
of integrated techniques that both balance the load among
the threads and vary the grid and the batch size, and of
orthogonal issues, such as more efficient methods of data
exchange between the GPU and the main memory. Finally,
it is worth investigating the behaviour of our approach in
the light of the recent dynamic parallelism extensions of the

10

CUDA programming model, introduced with the Kepler ar-
chitecture.

7. ACKNOWLEDGMENTS
This research has been co-financed by the European Union

(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing
in knowledge society through the European Social Fund.

8. REFERENCES
[1] P. Bakkum and K. Skadron. Accelerating sql database

operations on a gpu with cuda. In GPGPU, pages
94–103, 2010.

[2] N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi.
Hardware acceleration in commercial databases: a
case study of spatial operations. In Proceedings of the
Thirtieth international conference on Very large data
bases - Volume 30, VLDB ’04, pages 1021–1032.
VLDB Endowment, 2004.

[3] D. Cederman and P. Tsigas. On dynamic load
balancing on graphics processors. In Proceedings of the
23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, GH ’08, pages
57–64, 2008.

[4] S. Chaudhuri, U. Dayal, and V. Narasayya. An
overview of business intelligence technology. Commun.
ACM, 54:88–98, Aug. 2011.

[5] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[6] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive
query processing. Foundations and Trends in
Databases, 1(1):1–140, 2007.

[7] D. J. DeWitt and J. Gray. Parallel database systems:
The future of high performance database systems.
Commun. ACM, 35(6):85–98, 1992.

[8] W. Fang, B. He, Q. Luo, and N. K. Govindaraju.
Mars: Accelerating mapreduce with graphics
processors. IEEE Trans. Parallel Distrib. Syst.,
22(4):608–620, 2011.

[9] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice Hall
Press, 2 edition, 2008.

[10] A. Gounaris, C. A. Yfoulis, and N. W. Paton. Efficient
load balancing in partitioned queries under random
perturbations. TAAS, 7(1):5, 2012.

[11] J. Han and J. Gao. Research challenges for data
mining in science and engineering. In H. K. et al,
editor, Next Generation of Data Mining. Chapman &
Hall, 2009.

[12] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4), 2009.

[13] B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational joins on graphics
processors. In SIGMOD Conference, pages 511–524,
2008.

[14] W. Kleiminger, E. Kalyvianaki, and P. Pietzuch.
Balancing load in stream processing with the cloud. In
ICDE Workshops, pages 16–21, 2011.

[15] S. Madden, M. A. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of
Data, Madison, Wisconsin, June 3-6, 2002, pages
49–60. ACM, 2002.

[16] NVIDIA. Nvidia s next generation cuda compute
architecture: Fermi(whitepaper), 2010.

[17] NVIDIA. Nvidia cuda programming guide, 2012.

[18] N. W. Paton, J. B. Chávez, M. Chen, V. Raman,
G. Swart, I. Narang, D. M. Yellin, and A. A. A.
Fernandes. Autonomic query parallelization using
non-dedicated computers: an evaluation of adaptivity
options. VLDB J., 18(1):119–140, 2009.

[19] T. N. Pham, L. A. Moakar, P. K. Chrysanthis, and
A. Labrinidis. Dilos: A dynamic integrated load
manager and scheduler for continuous queries. In
ICDE Workshops, pages 10–15, 2011.

[20] E. Rahm. Dynamic load balancing in parallel database
systems. In L. Bougé, P. Fraigniaud, A. Mignotte, and
Y. Robert, editors, Euro-Par ’96 Parallel Processing,
Second International Euro-Par Conference, Lyon,
France, August 26-29, 1996, Proceedings, Volume I,
pages 37–52. Springer, 1996.

[21] E. Rahm and R. Marek. Analysis of dynamic load
balancing strategies for parallel shared nothing
database systems. In R. Agrawal, S. Baker, and D. A.
Bell, editors, 19th International Conference on Very
Large Data Bases, August 24-27, 1993, Dublin,
Ireland, Proceedings., pages 182–193. Morgan
Kaufmann, 1993.

[22] E. Rahm and R. Marek. Dynamic multi-resource load
balancing in parallel database systems. In U. Dayal,
P. M. D. Gray, and S. Nishio, editors, VLDB’95,
Proceedings of 21th International Conference on Very
Large Data Bases, September 11-15, 1995, Zurich,
Switzerland., pages 395–406. Morgan Kaufmann, 1995.

[23] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An adaptive partitioning
operator for continuous query systems. In Proceedings
of the 19th International Conference on Data
Engineering, March 5-8, 2003, Bangalore, India, pages
25–36. IEEE Computer Society, 2003.

[24] H. H. B. Sørensen. Auto-tuning dense vector and
matrix-vector operations for fermi gpus. In PPAM (1),
pages 619–629, 2011.

[25] J. L. Wolf, P. S. Yu, J. Turek, and D. M. Dias. A
parallel hash join algorithm for managing data skew.
IEEE Transactions on Parallel and Distributed
Systems, 4(12):1355–1371, 1993.

[26] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman.
Dynamic plan migration for continuous queries over
data streams. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Paris, France, June 13-18, 2004, pages 431–442.
ACM, 2004.

11

