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ABSTRACT
Host-side flash caching has lately emerged as a suitable and
e↵ective means of accelerating enterprise workloads. How-
ever, cache management for flash-based caching is di↵erent
from traditional DRAM-based caching. A flash cache sits
underneath the DRAM cache. Its position in the hierarchy
combined with the unique characteristics of flash, calls for
a di↵erent cache management solution. Specifically, cache
population, an aspect of cache management which is not at-
tributed much importance in DRAM caches, becomes cru-
cial in flash-based caches.

In this paper, we first present a performance evaluation
of three popular open-source flash cache implementations:
flashcache, bcache, and EnhanceIO . We evaluate them un-
der an industry-standard database benchmark and identify
their limitations. We demonstrate that several shortcom-
ings are due to sub-optimal cache population. We propose
a novel set of techniques for cache population, and present
the design of the Scalable Cache Engine (SCE) – a new flash
cache solution that incorporates our cache population tech-
niques. We demonstrate that SCE remarkably outperforms
the existing open-source solutions: 45% higher throughput,
55% lower latency, 12⇥ faster cache warm-up than flash-
cache, and 95% less memory usage than EnhanceIO .

1. INTRODUCTION
Over the last decade solid-state storage technology has

dramatically changed the architecture of enterprise storage
systems. Advancements in flash-based solid state drive (SSD)
technology have resulted in SSDs that outperform tradi-
tional hard disk drives (HDDs) along a number of dimen-
sions: SSDs have higher storage density, lower power con-
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sumption, a smaller thermal footprint, and orders of mag-
nitude lower latency and higher throughput. Thus, flash-
based storage devices have been deployed at various levels
of the enterprise storage hierarchy ranging from a storage
tier in a multi-tiered environment (e.g., IBM Easy Tier [13],
EMC FAST [6]) to a caching layer within the storage server
(e.g., IBM XIV SSD cache [15]), and to a host-side cache
(e.g., IBM Easy Tier Server [14], EMC XtreamSWCache [8],
NetApp Flash Accel [27], FusionIO ioTurbine [9]). Recently,
several all-flash storage systems that completely eliminate
HDDs (e.g., IBM FlashSystem 840 [12], Pure Storage [30])
have been introduced and gained significant traction.

Due to its performance, capacity, and cost characteris-
tics, flash memory fills the gap between DRAM and mag-
netic HDDs nicely. Flash is roughly 20 times faster than
HDDs, and about 100 times slower than DRAM. Also, flash
is around 10 times more expensive than HDDs, but some 10
times less expensive than DRAM. This makes flash a good
choice as a caching layer between DRAM and HDDs. In
a typical environment, host servers utilize directly-attached
(DAS) SSDs to cache data resident in a storage network
(SAN) backend. By placing data close to the applications
and eliminating network latencies, application performance
is improved. For instance, in server virtualization or on-
line transaction processing (OLTP) environments with SAN-
attached storage back-ends, host-side flash caching can re-
duce latency, eliminate congestion at the SAN backend, and
thereby improve overall system throughput.

The use of flash-based SSDs as a caching layer is par-
ticularly interesting in enterprise environments since it can
provide targeted performance acceleration. For example,
host-side flash caches can be utilized selectively at hosts
running performance-critical applications. Moreover, as a
storage layer cache, the presence of the cache is completely
transparent to the application. By contrast, when using
flash SSDs as persistent storage in the SAN or the host,
appropriate volumes need to be allocated by the adminis-
trator and some tuning is required at the application side to
ensure that the appropriate data end up on the SSDs and
even to ensure that the SSD does not become a performance
bottleneck. Ine↵ective tiering in such cases may result in
lower-than-expected performance [16]. In order to continue



to benefit from the high-availability, resiliency and manage-
ment functionality (such as snapshots and remote mirroring
functions) provided by the storage backend, host-side flash
caches typically operate in a write-through mode. That is,
the host only caches unmodified data and data that have
been already committed to the SAN so that a host failure
will not impact data availability.

Host-side flash caches inherently di↵er from traditional
DRAM caches in two ways: flash caches 1) sit underneath
DRAM caches in the storage hierarchy, and 2) use flash SSD
instead of DRAM as the caching media. The first di↵er-
ence influences the characteristics of workloads encountered
by the flash cache. When there is a substantial amount of
DRAM cache above the flash cache, the hottest potion of
workload is absorbed by the DRAM cache, and the flash
cache receives storage accesses for a sparser and wider range
of data with lower access frequency – in other words, data
locality at the flash cache is weakened. In such a multi-level
cache configuration, the second level cache must have a rela-
tively large capacity; otherwise, a performance improvement
is unlikely.

The use of flash SSD instead of DRAM as the caching me-
dia directly impacts the cache management policies. More
specifically, the asymmetric read-write characteristics and
endurance issues of flash render cache population an expen-
sive a↵air. With DRAM caches, population implies only a
memory copy operation, and therefore, it is a good idea to
populate on each cache miss. But, using these same cache
population policies on flash has several shortcomings, which
we describe next.

First, read operations that result in a cache-miss may be
slowed-down by cache population, due to high flash write
latencies. In traditional cache implementations, cache pop-
ulation occurs upon a cache miss: the missing blocks of
data are read from the source and copied into the cache
before being returned to the user. Typically, caches aim
to cache Most Recently Used (MRU) blocks as they have
higher likelihood of access in the near future, evicting the
Least Recently Used (LRU) blocks to make space if there is
none. Such mechanisms are perfectly suitable for DRAM-
based caches, where the cache size is small and population
is done by just a main memory write operation. However,
blindly populating all the data accessed by the user into
the flash cache is not always prudent for flash-based caches.
It has already been pointed out that populating upon every
cache miss may actually lower the end-to-end performance
of a flash cache rather than improve it [22]. Unfortunately,
the window of occurrence of this issue is not negligible. The
typical expectation is that once the cache is warmed up, the
cache miss rate becomes low, and that cache population oc-
curs rarely. However, for flash caches, cache warm-up takes
significant amount of time due to the relatively large capac-
ity (typically hundreds of gigabytes).

Slow cache warm-up is the second issue of cache man-
agement strategies that populate data upon a cache miss.
Flash caches have orders-of-magnitude higher capacity than
DRAM-based ones, in some instances up to several TiBs of
data. At this scale, it may take many hours to fill up the
cache: a 300 GiB-sized flash cache took over 10 hours to
reach its maximum hit rate for an enterprise workload [4].

The next issue is related to the handling of write I/O.
As mentioned earlier, a write-through policy is a standard
choice for enterprise storage. The backend SAN storage

servers are designed to be highly reliable and available even
in the event of hardware failures. On the other hand, with
use of commodity parts and lack of redundancy, host-side
SSDs are typically not as reliable. Therefore, most enter-
prise class flash cache solutions use write-through policy as
a default option. However, write-through policy can result
in even worse performance for a write intensive workload be-
cause every write incurs a cache population operation, which
is expensive on flash [22]. Unlike the first issue – increased
I/O latency from in-line cache populations – this issue re-
mains even after flash cache is fully warmed up.

Another issue arises when the cache capacity is smaller
than the working-set size – a possibility that cannot be ruled
out. In such a case, unconditional cache population will
result in thrashing, adversely impacting the cache hit rate
and resulting in poor performance. In conclusion, a flash-
conscious, selective cache population policy is necessary to
eliminate unnecessary cache population.

We have conducted a performance evaluation study with
three open-source solutions: flashcache [26], bcache [33], and
EnhanceIO [34]. The evaluation is based on the TPC-E
benchmark [5, 35], an industry-standard benchmark that
represents a typical workload to which flash caching is ap-
plied. We created a typical database server configuration,
and evaluated the three cache solutions with TPC-E. The
results show that these existing solutions have significant
shortcomings that prevent them from realizing the full po-
tential of flash caching. Shortcomings include a long ramp
up time due to slow population as well as a large main mem-
ory footprint. In some cases, the performance improvement
over the baseline was marginal; this was due to ine�cient
cache management.

In this paper we present the Scalable Cache Engine (SCE),
a novel host-side flash-based cache management framework
that addresses the issues listed above and aims to allevi-
ate the performance and scalability shortcomings of exist-
ing approaches. We focus on cache population, and pro-
pose three major changes to cache population policies. First,
we propose to not populate on each cache-miss – in other
words, we propose selective cache population. We monitor
I/O tra�c and choose a population candidate based on ac-
cess recency and frequency. Second, we propose to sepa-
rate the cache population path from the foreground I/O ac-
tivities so as to not influence I/O latency. Instead, cache
population occurs in the background and consumes a fixed,
reserved I/O budget. Moreover, we propose asynchronous
write-through (AWT) instead of synchronous write-through
to avoid adding delay to write requests. Finally, SCE mini-
mizes its memory footprint, an important consideration for
a scalable solution.

The key contributions of our work can be summarized as
follows:

• We present an experimental study with existing open-
source flash cache implementations under real-world
enterprise workloads. We analyze their performance
and identify major performance bottlenecks.

• Based on our observations, we introduce SCE, a novel
caching engine optimized for flash and geared towards
enterprise storage workloads. We detail the key de-
sign and implementation decisions that allow SCE to
achieve scalability and high performance.
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Figure 1: The amount of I/O for 100 MiB of random
read tests: bcache populated 20% less than the others, but
there was no other significant di↵erence in the amount of
I/O.

• We present results based on real-world workloads that
demonstrate significant improvements over existing open-
source solutions: 45% higher throughput, 55% shorter
latency, 12⇥ faster cache warm-up than flashcache,
and 95% less memory usage than EnhanceIO .

The rest of the paper is organized as follows: In Section 2,
we present our experimental study with three open-source
flash cache implementations under the TPC-E workload and
provide insights into their performance shortcomings. We
then discuss our approach to flash caching in Section 3. In
Section 4 we revisit the experimental evaluation with TPC-
E, this time comparing SCE to the existing approaches. An
overview of related work is given in Section 5. We present
our conclusions and future work in Section 6.

2. CACHE EVALUATION WITH TPC-E
Flash caching in host servers is gaining significant atten-

tion in the market and in the research community. However,
the performance impact of host-side flash caching has not yet
been studied systematically. Currently available results are
limited to micro-benchmarks with simple access patterns,
rather than to realistic enterprise workloads.

We evaluated three popular open-source flash cache solu-
tions with the TPC-E benchmark [5, 35] to understand the
performance impact of flash caching. Since database accel-
eration is one of the most popular enterprise use cases for
flash caching, we used TPC-E as the workload of choice, as
it has been designed to be representative of modern Online
Transaction Processing (OLTP) workloads. In particular,
TPC-E emulates the OLTP workload of a brokerage firm
where transactions are processed by a central database. The
transactions are related to the firm’s customer accounts and
include trades, account inquiries, and market research, as
well as interactions of the firm with financial markets to
execute orders on behalf of the customers and to update
relevant account information. The benchmark results in a
highly random I/O workload with an 87% read and 13%
write mix.

Our experimental setup is a fairly typical one, where an
enterprise database system is running within a virtual Linux 1

server. The physical host is running Linux and uses a directly-
attached SSD for caching, while network-attached storage
1Linux is a registered trademark of Linus Torvalds in the
United State or other countries, or both.

Table 1: TPC-E average TpsE and memory usage
with three open-source flash cache solutions: flash-
cache shows the highest average TpsE and largest memory
usage.

(Last 1 hour average) Memory
TpsE Read hit rate Usage

no-cache 11.2 N/A N/A
all-flash 87.9 N/A N/A

flashcache 56.9 98.66% 1,212 MiB
bcache 17.3 96.75% 15 MiB

EnhanceIO 17.5 96.52% 415 MiB

volumes are used as the storage backend. We configured a
200 GiB SSD partition as the caching device while the whole
VM image size (including the Linux OS and the TPC-E
database) was 160 GiB; thus, there is enough cache space to
hold the entire data set and no eviction needs to be exercised
by the cache drivers. More technical details about our setup
are given in Section 4. We repeated the same experiment
for all three cache drivers, namely flashcache, bcache, and
EnhanceIO , using the same database configuration and the
same hardware. All drivers were configured in write-through
mode, which is the typical choice for enterprise storage. We
also ran the benchmark for the baseline system, i.e., with-
out flash caching, and for a system that uses the SSD as
persistent storage space with the database on SSD; we refer
to the former as no-cache and to the latter as all-flash. For
each run we measured the number of TPC-E transactions
per second (TpsE), as well as I/O performance metrics and
cache performance statistics.

In Figure 2 we present the end-to-end TPC-E results for
an 8-hour run of the benchmark. Table 1 shows the av-
erage TpsE and read hit rate during the last hour of the
run, as well as the memory footprint of the caching drivers.
Interestingly, flashcache shows a much higher performance
improvement (5⇥ against no-cache) than the others (1.5⇥
by bcache and EnhanceIO). We also compared the memory
footprints of the three solutions for the configuration with a
200 GiB cache device and an 160 GiB source device; bcache
used only 15 MiB of main memory since it uses a B-tree
structure (stored in a flash caching device) for its index man-
agement – only few B-tree nodes are loaded in main memory.
On the other hand, flashcache and EnhanceIO maintained
their metadata in main memory, resulting in memory foot-
prints of 1,212 MiB and 415 MiB respectively, or 24 bytes
and 8 bytes per 4 KiB cached block, respectively.

The average hit rate is also shown in Table 1: flashcache
achieved a 2% higher read hit rate than other solutions, but
showed a much higher TpsE throughput. A small hit rate
di↵erence can make a significant di↵erence in end-to-end
performance in some cases, but this is not the case here.
Indeed, flashcache exhibited a 96.74% read hit rate about
4.6 hours into the run, which is comparable to the final hit
rate of the other two solutions. Yet, even with comparable
hit rates, flashcache performance was 45 TpsE, which is al-
ready much higher than what the other two drivers achieved
eventually.

To better understand the behavior of the caching solutions
under consideration, we ran a simple random read test. Af-
ter initializing the flash cache, we performed 100 MiB worth
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Figure 2: TPC-E results with three open-source flash cache solutions: after 8 hours of runtime flashcache achieves
about 5⇥ performance improvement, whereas bcache and EnhanceIO reach about 1.5⇥ performance improvement.

of random 4 KiB reads to the cache-enabled volume. We
repeated the same workload four times to make sure that
the data was populated into the flash cache, capturing the
amount of I/O tra�c to both the backend device and the
cache device. Figure 1 shows the amount of I/O collected for
the first and fourth iteration: since the workload remained
the same, one would expect that the cache hit rate would
have reached 100% at the fourth iteration. However, bcache
only populated 80% of the data. We observed no other sig-
nificant di↵erence. We carried out the same experiment with
writes instead of reads but we did not observe any signifi-
cant di↵erence among the solutions. This result supports
the claim that cache hit rate is not the main reason for the
performance shortcomings of bcache and EnhanceIO .

The next interesting observation is related to cache warm-
up times. As shown in Figure 2, it takes flashcache a sig-
nificant amount of time before it reaches a substantial per-
formance improvement over the baseline, an indication that
the cache warm-up procedure is slow. Such a behavior is
expected due to the 4 KiB cache block size: a 100 GiB flash
cache will only be filled up after 26,214,400 4 KiB cache
block misses. Cache warm-up times are particularly criti-
cal in use cases such as live Virtual Machine migration and
system fail-over, and slow warm-up introduces performance
variance depending on host machine state (e.g., depending
on the latest reboot cycle). More importantly, none of the
caching drivers get even close to realizing the full potential
of the SSD: even flashcache only reaches about 67% of the
all-flash performance after 8 hours of runtime, despite the
fact that the dataset could easily fit into the cache in its
entirety.

3. SCALABLE CACHE ENGINE
In this section, we first present three key changes to cache

population policies, and describe our implementation of SCE.

3.1 Selective coarse-grained population
Unconditional cache population on every cache-miss can

cause performance issues a) for write intensive workloads
and b) when the cache size is too small to hold the entire
working set. SCE chooses to populate selectively based on
I/O tra�c, which implies that we need to allocate some
memory per observation unit. Clearly, 4 KiB is too small a

Scalable Cache 
Engine (SCE)!

Caching device!
(SSD)!

Backing device!
(HDD)!

!"A pop.!
task!

Completion !
of tasks!

Read!
Request!

Invalidation!
Write!

Request!

Cache hit / miss!

Cac
he

-hi
t!

C
ache-m

iss!

Asynchronous 
population 

worker!

Asynchronous 
population 

worker!

Asynchronous 
population 

worker thread!

AWT 
worker 
thread!

Linux Device Mapper Framework!

Read !
a fragment!

Write  
a fragment!

Figure 3: Asynchronous cache population in SCE:
SCE provides cache functions as a service; read requests are
directed to the caching device or the backing device based on
cache mapping information; write requests invalidate page
validity bitmaps and are passed to backing device and the
AWT worker thread; multiple threads perform cache popula-
tions asynchronously in the background.

granularity to maintain such information, and therefore we
define a fragment as the cache management unit. A frag-
ment consists of N logically contiguous blocks (of 4 KiB
each); in our approach we use N = 256 for a 1 MiB frag-
ment size. The user workload is continuously monitored
and hot fragments are identified based on the foreground
I/O tra�c. SCE picks the hottest fragments for population
from among the 100 most recently accessed fragments. This
enables faster population since population occurs in larger
units (1 MiB fragments) as opposed to 4 KiB pages.

3.2 Asynchronous background population
In-line cache population, that is, population that occurs

within the user data path, can slow down cache-missed read
operations. It can degrade overall I/O performance, espe-
cially when too many cache misses happen – for instance
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asynchronously, and page validity bitmap is used to prevent
servicing read requests until the cache update operation is
completed.

when the flash cache is empty or the workload changes.
To avoid this, SCE employs asynchronous background cache
population at a fragment granularity. As shown in Figure 3,
we separate the cache population path from the foreground
I/O data path. This approach borrows ideas from auto-
mated storage tiering mechanisms [6, 13]. The user work-
load is continuously being monitored as already explained
in Section 3.1 and hot fragments are identified based on the
foreground I/O tra�c. Once identified, they are populated
into the cache by multiple asynchronous population worker
threads in the background.

This separation of concerns completely decouples the two
data paths, e↵ectively removing the flash write latency from
the user requests. As a result, this approach gives the cache
more control and flexibility about how much and when to
populate. For instance, the cache can limit its population
rate to avoid performance degradation for write intensive
workloads or when it finds that the working set has already
been populated, freeing up bandwidth from the device to
serve read hits.

Since population is done at a fragment granularity, it is
possible that a cache miss for 4 KiB block may result in a
1 MiB fragment population. In practice, however, we have
found that this acts as an e↵ective pre-fetching mechanism
that not only accelerates cache warm-up but also improves
the cache hit rate. Moreover, fragment-based population
is desirable for flash based SSDs because it results in large
writes to the SSD thereby improving the endurance of the
flash device [25]. By changing the fragment size, the write
pattern can even be customized to be optimal for a specific
SSD based on the internal SSD geometry such as the virtual
block size [31].

3.3 Asynchronous write-through
Write-through is another aspect of the cache implementa-

tion that needs to be adapted to the specific characteristics
of flash because flash writes are relatively expensive in terms
of latency and device wear. In a traditional implementation
every user write will be submitted to both the source device
and the caching device, and the user request will be com-
pleted only after the two writes (to the cache and source
devices) have been completed. However, as researchers have
pointed out, this can cause significant performance issues
under write-mostly or write-intensive workloads [22, 23] due
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to the dependency of the user write latency on the write
latency of the flash device. To eliminate this e↵ect, SCE
employs asynchronous write-through (AWT), which removes
this dependency by parallelizing the two writes and complet-
ing the flash write asynchronously.

In Figure 4 we illustrate how a user write operation is
handled using asynchronous write-through. Once the write
reaches the cache, SCE invalidates the appropriate pages
using a page validity bitmap (Figure 4) to prevent servicing
read requests to those pages while write-through is still on-
going. Then a copy of the user bu↵er is made and the request
is forwarded to the source device. In parallel, the cloned
bu↵er is passed to the AWT thread, which in turn submits
a write request to the SSD using that bu↵er. Once the write
to the source device returns, the user request is completed.
When the SSD write returns upon completion, the appropri-
ate pages are re-validated and the write-through completes.
In order to address the issue of duplicate or concurrent write
operations to the same fragment, SCE allocates an addi-
tional bitmap to keep track of duplicate writes. The pages
are validated at once when the last write request completes.
Additional care needs to be taken to handle cases where the
write to the source or to the SSD fails. If the source write
fails, then SCE invalidates the pages again after the SSD
write completes. If the SSD write fails, then the previously
invalidated pages are not re-validated.

3.4 Coarse-grained cache management
Flash caches tend to be much larger than DRAM-based

ones. In the market, vendors are already o↵ering flash cache
solutions with more than 2 TB capacity [7]. With the den-
sity of flash continuously increasing, flash caches are bound
to soon reach 10’s of TBs in capacity. Existing flash cache so-
lutions use a cache block size of 4 KiB, similar to file systems
and operating system (OS) page caches. At this granular-
ity, the scalability of the cache is limited by the size of the
mapping metadata (since each cache block requires a cor-
responding metadata entry). For instance, flashcache uses
roughly 24 bytes of main memory per 4 KiB block which
implies that nearly 12 GiB of memory would be required to
track metadata for a 2 TiB flash cache. On the other hand,
at 8 bytes per block EnhanceIO would require only 4 GiB
of main memory to track metadata for a 2 TiB cache.



As mentioned earlier, SCE uses a 1 MiB sized fragment
as the cache allocation and management unit. Cache alloca-
tion, population, and eviction occur at a fragment granular-
ity, while read hits, invalidates and write-through occur at
a 4 KiB block granularity. Obviously, coarse-grained cache
management is more memory e�cient than a fine-grained
approach. In our approach we use roughly 76 bytes per
cached fragment (1 MiB) for cache metadata, achieving a
152 MiB main memory footprint for 2 TiB of flash cache.

Coarse-grained cache management requires several issues
to be addressed. The first issue is cache space e�ciency,
since a whole fragment is cached although only a few blocks
in the fragment may be hot. In contrast, with a fine-grained
mapping, the cache can allocate only hot blocks, thereby
utilizing the flash space more e�ciently. However, spatial
locality in the access pattern mitigates this e↵ect for coarse-
grained caches. In addition, this issue becomes less critical
as flash capacities grow.

A more complicated issue arises with respect to handling
mismatches between the I/O request size and the cache map-
ping size, especially in the case that the I/O request size is
not a multiple of the fragment size. For instance, to pop-
ulate upon a write miss, the cache would need to read the
rest of the data (i.e., the blocks not covered by the write re-
quest but belonging to the same fragment) from the source
device. Alternatively, the cache may allocate the fragment
but only fill it partially, e↵ectively ending up wasting some
space on flash. Both flashcache and EnhanceIO choose not
to populate when an I/O request size does not match the
cache mapping block size. SCE does not face this problem,
as it populates the cache asynchronously in the background.

Figure 5 shows how SCE manages cache metadata using a
coarse-grained mapping. Because SCE maintains mappings
at a fragment granularity, it is feasible to use a direct map-
ping instead of a hash table. The fragment mapping table
contains mapping table entries for the entire address space
of the source device (e.g., a logical volume in the SAN): each
table entry maps a logical fragment in the source device to a
fragment descriptor if the fragment is cached. The fragment
descriptor describes the state of each cached fragment, in-
cluding a page validity bitmap to keep track of which 4 KiB
pages in the fragment are valid. The bitmap maintains a bit
per 4 KiB page, resulting in a bitmap size of 32 bytes per
1 MiB fragment. Note that by using a direct mapping table
a fragment-level lookup can be done with just one mem-
ory reference. For a fragment found in the cache, e�cient
bitmap operations on the page validity bitmap can be used
to determine a hit or a miss, even when the request spans
multiple pages.

With this design the size of the metadata depends on the
size of the source volumes in addition to the cache size. How-
ever, for large cache sizes the footprint of the fragment de-
scriptors dominates that of the mapping table. For instance,
with 100 TiBs of backend storage and 16 TiB of cache, the
size of the mapping table is 400 MiB, while the size of the
fragment descriptor array is 1,152 MiB. Even for 1 PiB of
storage and 256 TiB of flash cache, SCE only needs about
22 GiB of memory, which is still feasible.

3.5 Cache eviction
SCE employs a variation of the generalized CLOCK algo-

rithm [32] as the cache eviction policy. SCE uses a reference
counter instead of a reference bit per fragment. When a

fragment is accessed, its reference counter is incremented,
up to a ceiling value (set to 4). As the clock hand moves
past the fragment, the counter is decremented; a fragment
having a reference counter of 0 is eligible for eviction. This
algorithm, which is similar to the bu↵er cache replacement
algorithm of PostgreSQL [10], takes into account both the
access frequency of a fragment and its access recency to de-
cide fragment replacement.

3.6 Implementation
We now turn to the implementation of SCE. We have im-

plemented SCE on Linux using the Device Mapper (DM)
framework. SCE creates a DM device on top of each source
volume, which intercepts user read requests and forwards
them to the cache. If a request results in a cache hit, it is
served from the cache; otherwise, a miss is returned and the
request is forwarded to the backing source device. Write re-
quests are intercepted in a similar manner and write-through
is performed as described in Section 3.3.

For the asynchronous cache population, SCE uses a group
of parallel threads, each of which is running its own instance
of the cache population policy. As the hit rate grows and
the free space in the cache shrinks, the number of threads
is reduced to slow down the population rate. The intu-
ition behind this is that when the hit rate becomes high,
this means that most of the working set has been already
cached. Thus the population can proceed at a slower rate,
e↵ectively freeing up SSD bandwidth to be used for serv-
ing cache hits. In particular, cache miss notifications are
distributed to population threads and each thread decides
whether the corresponding fragment should be populated
or not. Subsequently, the population thread suspends its
operation for some time by sleeping, e↵ectively limiting its
population rate. The operation of the population threads is,
thus, regulated by three parameters: a) the target miss rate
(target missrate), b) the minimum percentage of free frag-
ments in the cache (min free pcnt) and c) the sleep time for
a population cycle (period). Algorithm 1 shows how these
parameters are used by each one of the threads.

In our current implementation, SCE uses eight threads,
all of which run until the cache read miss rate becomes less
than 35% or the percentage of free space in the cache reaches
10% or less. After that point only four threads perform
cache population until read cache miss-rate becomes less
than 15%. When the cache miss-rate goes lower than 15%,
only 1 thread remains running and sleeps for 500 millisec-
onds at each population cycle. Each population thread uses
its own fragment-sized memory bu↵er for its on-going popu-
lation; thus by default SCE uses 8 MiB (1 MiB ⇥ 8 threads)
of memory for asynchronous cache population. Similarly,
SCE pre-allocates memory space for asynchronous write-
through to hold copies of in-flight user data. SCE uses
another 8 MiB for that purpose; if that is not su�cient,
e.g., due to a very high write rate, then SCE adopts a write-
around policy.

4. EVALUATION

4.1 Evaluation method
We now turn to the experimental evaluation of SCE. Fig-

ure 6 illustrates the performance measurement setup that
was used. The VM server is a 24-core x86 server with 64 GiB
of RAM, running Linux kernel 3.11. An enterprise class
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Figure 7: Eight hour TPC-E with a 200 GiB flash cache (a) TpsE: SCE demonstrates superior performance to three
open-source flash cache solutions – it is much faster and achieves much higher TpsE, (b) Last hour average read hit
rate: SCE achieved 100% cache read hit rate while others achieved 96.5-98.7%, (c) Last hour average response time:
SCE shows only 17% increased average response time of all-flash configuration while the next best(flashcache) yielded about
2.6⇥ longer response time and bcache and EnhanceIO yielded much worse about 11⇥ longer response times than all-flash.

Algorithm 1 Asynchronous cache population thread

loop
Sleep for period
Read current cache status
if cur free pcnt � min free pcnt then

if cur missrate � target missrate then
Promote the hottest fragment among the
100 MRU fragments

end if
end if

end loop

eMLC PCIe SSD card with a capacity of 1.8 TiB is attached
to the VM server. The iSCSI target comprises 3⇥ 73 GB,
15 kRPM, 6 Gbps SAS hard disks in a RAID0 setup. The
VM server and the iSCSI target are connected over Giga-
bit Ethernet. The TPC-E benchmark is installed and runs
within a Kernel-based Virtual Machine (KVM) running Red
Hat Enterprise Linux (RHEL) 6.4 and IBM DB2 Express-C
v10.5. The TPC-E KVM instance has 8 CPUs and 15 GiB
of RAM allocated to it – this is based on the suggested
specification for an extra-large DB instance within Amazon
cloud [1]. We used the default configurations for the flash
cache drivers: write-through mode, 4 KiB block size (ex-
cept for bcache, which uses 512 B by default), 512 associa-
tivity for flashcache, and 256 associativity for EnhanceIO .
Note that flashcache will not cache from any I/O that has
a size smaller than the configured block size (it marks any
such I/O as “uncachable”). Setting the flashcache block
size to 1MiB, for example, results in zero cached data for
the evaluated workload. Thus, we were not able to emulate
a coarse-grained cache management with flashcache. After
each TPC-E run, the VM disk image file is rolled back to a
clean state, the KVM host machine is rebooted, and PCIe
SSD is raw formatted with a vendor provided utility pro-
gram. Disk I/O statistics are sampled every minute.

4.2 Eight hour run with a 200 GiB flash cache

!

      Hypervisor: KVM !!
        OS: Fedora 19, Kernel 3.11.7-200.fc19.x86_64!
        Hardware: IBM System x3650 M3 / 24 Cores 64GiB RAM!
!

Gigabit Ethernet!

!Guest virtual machine!
!OS: RHEL6.4, 2.6.32-358.18.1.el6.x86_64!
!Virtual hardware: 8 CPUs, 15GiB RAM!

DB2 Express-C v10.5!

PCI-e SSD!

TPC-E (5,000 customers, 300 days, 4 threads)!

!!
!!

      iSCSI Target !
        scsi-target-utils-1.0.24-3.el6_4.x86_64!
        OS: RHEL6.4, Kernel 2.6.32-358.23.2.el6.x86_64!
        Hardware: IBM System x3650 M2 / 16 Cores 24GiB RAM!

Flash cache management layer!

RAID0: !
3x 73GB HDDs (15KRPM, 6Gb SAS)!

160GiB partition on iSCSI volume!

Transactions/sec!
Avg. trans. latency!

Cache statistics!

!
/proc/diskstats!

raw storage access!
statistics!

160GiB volume with flash cache!

Figure 6: Measurement setting: two servers, three
15 kRPM HDDs, one PCIe eMLC SSD are used to create
a typical database server configuration; one server runs as
an iSCSI target with 3⇥ HDDs; the other server runs as a
KVM host using the PCIe SSD as flash cache and a virtual
machine runs TPC-E benchmark on DB2 database.

We first evaluated the flash cache solutions running TPC-
E in a setup where the flash cache capacity is larger than the
workload. More specifically, we created a 200 GiB partition
on the PCIe SSD with the VM disk image being 160 GiB.
In such a scenario the flash cache should eventually migrate
the entire workload into flash.

Figure 7(a) presents the bottom line TpsE performance,
where one point was collected every minute during an eight-
hour-long TPC-E benchmark run. SCE exhibits a significant
performance boost compared to the other solutions, ranging
from 1.5⇥ compared to flashcache, to 4.8⇥ compared to
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Figure 8: The amount I/O comparison for four hour
run with 30 GiB flash cache: the amount of SSD reads
represents how many read requests are serviced by flash cache
and the amount of SSD writes means the amount of cache
population; with flashcache and EnhanceIO population rate
is higher than cache service rate, which is not desirable as
a cache, while with bcache and SCE, the cache service rates
are higher than cache population rates – especially on SCE,
cache service rate is about 3⇥ higher than cache population
rate, and it results in the highest TpsE result in Figure 9.

bcache and EnhanceIO . More significantly, SCE results in a
performance that is within 6% of the all-flash setup. Fur-
thermore, SCE is faster to adapt to the workload: it only
took 38 minutes for SCE to exceed the maximum perfor-
mance of flashcache, and its total ramp up time was less
than 2.5 hours compared to nearly 7 hours for flashcache.
Figure 7(b) illustrates the read hit rate during the last hour
after a 7 hour long cache warm-up. SCE achieves 100%
of read hit rate while others show slightly lower rates be-
tween 96.5-98.7%. Figure 7(c) compares average response
time during the last hour; SCE shows 2.2⇥ shorter response
time.

4.3 Four hour run with a 30 GiB flash cache
We next evaluated TPC-E performance of the flash caches

in a more realistic scenario, where the cache is significantly
smaller than the workload dataset: the flash cache com-
prised a 30 GiB partition of the PCIe SSD, with dataset
size at the backend remaining at 160 GiB. Under such a sce-
nario, and after the flash cache is filled for the first time, the
cache replacement path become e↵ective – unlike the first
experiment where it was never exercised.

Figure 9 depicts the results. Notably, unlike the first
experiment, flashcache did not perform significantly better
than bcache and EnhanceIO ; this can be explained by the
reduced cache read hit rate of the flashcache, going from
99% in the 200 GiB flash cache setup to 50% in the limited
flash cache size setup. To better understand this behavior,
we analyzed the amount of I/O tra�c during the experi-
ment. Figure 8 compares the I/O tra�c going to the SSD
and iSCSI volume for each of the four flash cache solutions.
Since the caches were operating in write-through mode all
the SSD writes can be attributed to cache population traf-
fic (as well as to persistent cache metadata management in
the bcache case). Both flashcache and EnhanceIO seem to
have been populating every cache-missed block: the amount
of SSD write was higher than the amount of SSD reads.
As of the tested version (3.1.1), flashcache performs LRU
(or FIFO, based on the chosen policy) replacement without
taking into account frequency of accesses – each read cache
miss will result in a block population and thus a write to the
SSD. We assume something similar for EnhanceIO . Based
on the di↵erence in read hit rate between bcache (83%) and
that of flashcache (50%) and EnhanceIO (25%), we assume
that bcache employs some kind of frequency filter on top
of LRU to avoid constant cache replacement. Despite the
higher hit rate, bcache did not o↵er a correspondingly higher
TpsE performance. This is attributed to the persistent cache
metadata management of bcache, which also translates to a
relatively high average response time (Figure 9(c)).

SCE achieves significant improvements in cache hit rate,
average latency, and bottom line performance. In terms
of TpsE, SCE is 3.6⇥, 4.1⇥, and 4.9⇥ higher than flash-
cache, bcache, and EnhanceIO , respectively (Figure 9(a)).
We attribute the improvements to the asynchronous write-
through, coarse-grained asynchronous population and to the
replacement policy of SCE that takes recency and frequency
into consideration. Meanwhile, the other approaches utilize
synchronous write-through, fine-grained population and a
replacement policy based solely on recency.

4.4 Write-through vs. write-back
In enterprise storage systems, direct-attached flash cache

solutions typically augment the SAN in a non-disruptive
manner: the backend storage’s high reliability and availabil-
ity are left intact. In such a scenario the flash cache operates
in write-through mode. In a non-enterprise, share-nothing
scenario, however, write-back mode could also be employed
without a↵ecting the reliability of the system. Write-back
usually results in higher performance than write-through,
since the write requests can be serviced locally in the flash
cache and lazily committed to the primary storage at a later
point in time.

We evaluated all three open source flash cache solutions
under write-back mode running the same TPC-E experiment
as in Section 4.3. Because SCE only supports asynchronous
write-through and write-around modes, we show the result
of SCE with asynchronous write-through instead.

Results depicted in Figure 10 verify that the write-back
mode significantly improves the performance compared to
write-through: 97%, 83%, and 136% improved TpsE val-
ues were measured on flashcache, bcache, and EnhanceIO ,
respectively. Despite this improvement, SCE still outper-
formed the other solutions by at least 1.8⇥. More impor-
tantly, SCE does so without disrupting the resilience and
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Figure 9: Four hour TPC-E run with a 30 GiB flash cache (a) TpsE: when the flash cache size is smaller than the
active working set size, the performance gains of the three open-source flash cache solutions are remarkably reduced – only
about 55% by flashcache; SCE still demonstrated huge performance improvements – about 445%, which is about 3.6⇥ higher
TpsE than flashcache, (b) Last hour average read hit rate: SCE achieved 91.1% read hit rate in spite of limited cache
size, and interestingly, the read hit rate of bcache is higher than that of flashcache, but its TpsE is similar or slightly lower than
TpsE of flashcache., (c) Last hour average response time: compared to the result with big enough flash cache (Figure 7)
bcache and EnhanceIO show little increased response times and flashcache shows 3⇥ longer response time; SCE achieved only
40% longer response time than the response time of all-flash configuration.

high availability functions of the primary storage backend.

4.5 Impact of AWT and fragment size
As described in Section 3, two key features of SCE are

AWT and coarse-grained cache management. We tried to
quantify the e↵ect of these features on the performance of
SCE. To this end, we run TPC-E for four hours with a
30 GiB flash cache with four di↵erent SCE configurations:
(a) SCE baseline: AWT enabled and a fragment size of
1 MiB, (b) AWT disabled and a fragment size of 1 MiB,
(c) AWT enabled and a fragment size of 128 KiB, and (d)
AWT enabled and fragment size of 8 MiB. With AWT dis-
abled, SCE operates in write-around (or write-invalidate)
mode. In this mode a write request is passed to the source
device directly, and if a mapped fragment exists in the flash
cache, the written pages are invalidated by using the page
validity bitmap of the fragment.

Figure 11 depicts the performance for each of these four
SCE configurations under TPC-E. First, AWT clearly is crit-
ical in sustaining high performance in the steady state un-
der coarse-grain cache management and a population grain
that is significantly larger than the size of the user I/O re-
quests. By asynchronously re-populating invalidated pages
in cached fragments when they are written to, SCE man-
ages to keep fragments valid in their entirety. Second, the
choice of fragment size makes a big di↵erence in perfor-
mance: small values result in significantly longer ramp-up
time due to slower population (having 128 KiB fragments
takes 8⇥ longer to reach steady state than 1 MiB fragment);
large values result in significantly reduced steady state per-
formance due to a limited agility to adapt to the workload
because of the increased population and eviction overheads.

4.6 SSD endurance
Unlike DRAM, flash has limited endurance in terms of

the number of program erase cycles, and it is thus desirable
to minimize the amount of writes to the flash caching SSD
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Figure 12: The amount of write to SSD per transac-
tion: SCE writes 43-50% less than the next best(flashcache)
does.

device in order to maximize its lifetime. We therefore com-
pared the flash caches based on the amount of write I/O
to the caching SSD for both the 200 GiB SSD cache and
the 30 GiB SSD cache TPC-E runs. Figure 12 shows the
total amount of writes to the SSD divided by total num-
ber of transactions (SSD writes in KiB/transaction). First,
we observed that the 30 GiB flash cache configuration ex-
hibits significantly higher SSD write tra�c across all the
flash cache solutions than the 200 GiB configuration. This
can be attributed to the fact that with a 30 GiB configura-
tion, the working set size is larger than the cache size. As
a result both cache evictions and cache population are on-
going. Second, SCE exhibited a significantly lower amount
of writes per transaction in both configurations: 43% less
than flashcache in the 200 GiB configuration and 21% less
than bcache in the 30 GiB configuration. It does so despite
the fact that it populates at a 1 MiB fragment granularity
as opposed to the other flash cache solutions that populate
in 4 KiB blocks.
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Figure 10: TPC-E results with write-back policy and 30 GiB flash cache (a) TpsE: all three open-source flash
cache solutions show much higher TpsE than with write-through policy, (b) Last hour average read hit rate: flashcache
and EnhanceIO show higher hit rates while bcache shows lower hit rate than with write-through policy, (c) Last hour average
response time: bcache achieved higher TpsE with much shorter response time but lower read hit rate than with write-through
policy; this means that I/O latency can be more important than cache hit rate for database performance.
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Figure 13: Memory foot-prints: bcache used the small-
est amount of memory because it keeps cache mapping in-
formation in a cache device as a B-tree; besides bcache, the
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and EnhanceIO.

4.7 Memory usage
Flash cache solutions typically maintain their metadata in

main memory; the space requirements of the metadata are
typically proportional to the size of the cache. With SSD
capacities already reaching several TBs, the memory foot-
print of a flash cache solution can be significant. We thus
evaluated the memory e�ciency of flash cache solutions by
measuring their memory usage over the Linux /proc/mem-
info interface. Specifically, we first dropped all page, dentry
and inode caches, and then read /proc/meminfo before and
after initializing the flash cache. We calculated the memory
footprint of each flash cache solution based on the amount
of free memory before and after initialization.

Figure 13 compares the memory foot-prints for two cache
configurations: 200 GiB and 1 TiB of flash cache. bcache is
the most memory e�cient as it maintains its main metadata
mapping information in the cache device as a B-tree. The
non-volatility of bcache metadata, however, induces a heavy
performance overhead as shown by the consistently high av-
erage response time it exhibited across our performance eval-

uation as presented in the previous paragraphs. SCE, on
the other hand, achieves a small cache metadata footprint
through coarse-grained cache management of 1 MiB frag-
ments without sacrificing performance. This resulted in a
66⇥ and 23⇥ smaller memory usage for the 1 TiB cache
size compared to flashcache and EnhanceIO , respectively.

5. RELATED WORK
Traditionally, the focus of research in the area of cache

management has been on cache eviction policies. A num-
ber of cache eviction policies have been proposed including
LRU, Clock [3], Generalized Clock [32], 2Q [19], LIRS [18],
ARC [24], CAR [2] and Clock-Pro [17]. These policies have
mostly been developed with RAM-based caches in mind and
their main goal has been to optimally combine recency and
frequency of accesses to maximize the cache hit rate, as well
as to gracefully adapt to changing workloads. More recently,
flash-aware cache management schemes such as CFLRU [28],
LRU-WSR [20], and SpatialClock [21] have been proposed.
These schemes have been designed for RAM-based caches
on top of flash-based backing storage and their key focus
continues to be on cache eviction. To the best of our knowl-
edge, our work is the first attempt to throw the spotlight on
cache population as opposed to cache eviction.

In the past few years, flash-based caching solutions have
begun to attract the attention of both the industrial as
well as academic research community. Researchers from Ne-
tApp proposed a flash caching solution called Mercury [4].
While interesting results were reported, the cache manage-
ment scheme itself was not tailored to the characteristics of
flash and therefore not of particular interest to flash-based
caching.

Koller et al. published a study on write policies for host-
side flash caches [22]. This work addressed the performance
issues associated with write-through cache policies and pro-
posed two new policies: ordered write-back and journaled
write-back. While the policies address consistency issues
arising from write-back caching, the proposed approaches
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Figure 11: TPC-E with 30 GiB flash cache for di↵erent SCE configurations (a) TpsE: AWT is critical in
sustaining high performance; smaller sized (128 KiB) fragment configuration results in slower performance improvement while
bigger sized (8 MiB) fragment configuration results in lower TpsE. (b) Last hour average read hit rate: without AWT,
read hit rate is remarkably lower and it is the reason for the lower TpsE; 128 KiB fragment configuration achieved the same
read hit rate with the baseline configuration; 8 MiB fragment configuration loses only little amount of cache hits but its TpsE
value is even lower than without AWT configuration – this may be because of the the ine�ciency of maintaining cache with
a too coarse granularity. (c) Last hour average response time: without AWT configuration, response time increases
because of lower cache hit rate while 8 MiB fragment configuration does because of too much cache population tra�c – about
5.5⇥ more amount of write tra�c than baseline was given to the SSD.

cannot achieve enterprise-class reliability and high availabil-
ity which requires data to be available even in the event of
SSD failures. Typically such reliability and high availability
is achieved by employing redundancy at the storage backend
(e.g., with RAID [29] for drives, dual controllers, multiple
paths, etc.). We demonstrate through our experiments that
SCE with asynchronous write-through can even outperform
open-source solutions that use write-back policies as shown
in Section 4.4.

Bonfire [36] was proposed to accelerate cache warm-up
for large storage caches. However, the approach followed in
that work is very di↵erent from our approach. Bonfire is
external to the cache, i.e., it is a component that functions
independently from the cache manager. Bonfire monitors
storage workloads, records relevant metadata, and uses that
information to execute warm-up explicitly. Our approach,
on the other hand, is one that is integrated with cache man-
agement and does not rely on external components or prior
knowledge of the workload. In SCE, the cache management
module itself controls the rate at which the cache gets pop-
ulated. Configuration parameters, such as the number of
population threads, can be used to influence the population
rate. That said, the two approaches are essentially orthogo-
nal and, when used in combination, the benefits of both can
be reaped.

In [11] Holland et al. present a performance evalua-
tion of flash caches that utilizes a trace-driven simulation
methodology and aims to understand the performance im-
pact of various configuration parameters. However, some
of our results seem to conflict with their conclusions. For
example, our studies with the TPC-E benchmark indicate
that caches with write-back policy can provide significantly
better performance compared to caches with write-through
policy. However, their study seems to indicate that the two
policies do not impact performance significantly. This may

be an artifact of the evaluation methodology or the workload
used or may even be attributed to the write performance
characteristics of the SSDs and the backend storage used in
each case.

6. CONCLUSION
The focus of this paper has been on host-side flash-based

caches, which have recently gained traction in enterprise en-
vironments to accelerate storage workloads. An experimen-
tal study of existing open-source flash cache implementa-
tions using the industry-standard benchmark TPC-E has
revealed that there is still much to be desired in terms of
performance and scalability. Prompted by our empirical ob-
servations, we architected and implemented SCE, a novel
caching engine that employs coarse-grained caching in com-
bination with background cache population and asynchronous
write-through. Our experiments showed that SCE outper-
forms existing solutions, o↵ering higher performance, shorter
warm-up times and high scalability, thereby demonstrating
both the potential and the necessity of this approach.

In the future, we plan to further optimize SCE to make
it more appropriate for enterprise environments. To elimi-
nate warm-up times after reboots we will exploit the non-
volatility of flash to enable SCE to cache data persistently
on the SSD. We also plan to add performance management
capabilities, so that the caching driver can ensure that the
SSD will never become a performance bottleneck. Another
direction for future research is experimentation with di↵er-
ent SSD devices to study how cache management algorithms
should adapt to accommodate widely varying SSD perfor-
mance characteristics.
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