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ABSTRACT
In today’s database systems, there is an ongoing debate on
which processing model is the best. While the vectorized
processing model shows better performance for memory-
bound operations and queries, the compiled processing model
is beneficial for compute-intensive ones. However, a huge
drawback of compiled query engines is their initial query
compilation time, which especially sets them back in case of
short query runtime, because compilation times overshadow
the short query execution times. Hence, the first approaches
aim to avoid compilation time by interpreting the code that
is to be compiled. However, naturally, interpreted operators
optimized for compiled execution cannot compete with pure
vectorized operators that were designed for an interpreted
execution. Hence, the intuitive approach to hide compila-
tion time is to start query execution in a vectorized engine,
and upon finished query compilation, switch to the com-
piled engine. In this paper, we investigate how to switch
from a vectorized to a compiled execution engine by using
different natural transition points (i.e., pipeline breakers) in
query execution. Our investigations show that this proce-
dure effectively hides compilation times and gives a speedup
of 3x when comparing separate query runtimes of compiled
execution.

1. INTRODUCTION
Compiled execution engines (e.g., Hyper) have an execu-

tion time close to hand-written code [10]. However, its faster
execution time comes up with the overhead of compiling the
given query. Even though the compilation cost is negligible
compared to the query processing time on large datasets, it
could be an overhead for small datasizes, as shown in Fig-
ure 1. Therefore, it is imperative to address the compilation
overhead to improve query processing performance.

Even with efficient compilation techniques, there is still an
idle window between the time when a query is issued until
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Figure 1: Single threaded performance graph for TPC-H Q6
in vectorized and compiled code execution.

the start of its execution. Depending on the complexity of a
query, this window can be as high as 100ms [10]. Therefore
to overcome the cost of compilation completely, it is advis-
able to use interpreted execution that hides compilation of
the query [6]. We follow up on this idea and hide compilation
using an interpretation based execution engine. A vector-
ized engine with its execution processing on cache-resident
vectors is a natural candidate for efficient interpreted ex-
ecution. Therefore, in this work, we focus on hiding the
compilation overhead using vectorized execution.

Hiding compilation cost using vectorized engine (or rather
its operators) requires partial results of vectorized execution
to be forwarded to the compiled execution. Since compiled
execution does not read/write partial results of intermediate
operators in a pipeline, we propose to use their natural ma-
terialization points i.e., pipeline breakers as exchange points
from vectorized to compiled execution.

In this work, we use the pipeline breakers: aggregation,
hash join, and hash aggregation (i.e., group by) for forward-
ing results from vectorized to compiled execution. Based on
the framework by Kersten et al. [5], we present how to adapt
the two query engines in order to inter-operate in query ex-
ecution. Specifically, we show how compiled execution uses
the intermediate results of the vectorized execution engine.

Our approach shows a performance improvement of up to
a factor of three by hiding compilation times and several
further interesting details in the result.

In summary, we show that with a pipeline breaker as a
connector, we can hide the compilation cost using vectorized
execution. Our contributions are as follows:
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• We propose Tether, a hybrid execution engine that al-
lows for vectorized data processing while query code is
compiled.

• In Tether, we investigate different pipeline breakers
to forward partial results from vectorized execution to
compiled execution after code compilation is finished.

• Our evaluation analyzes different TPC-H queries and
shows significant benefits of hybrid execution that go
far beyond the performance gains of purely compiled
or interpreted (vectorized) execution.

The remainder is structured as follows. First, we review
related work in Section 2. We provide the background in-
formation of the two state-of-the-art execution models in
Section 3. The features of our Tether execution model are
explained in Section 4. We also present in this section, de-
tails of using pipeline breakers as switching points between
the execution models. We conduct several experiments com-
paring our Tether framework to stand-alone compiled and
vectorized engines using the standard TPC-H benchmark in
Section 5. Based on the experimental results, we discuss the
key performance factors and the next steps for our work in
Section 6. Finally, we draw our conclusions in Section 7.

2. RELATED WORK
To improve on LLVM compilation overhead, Kohn et al.

[6] interpret the LLVM IR of a query directly using a cus-
tom interpreter. Though similar to us, the work also blends
interpreted and compiled execution, but still has to gener-
ate the LLVM IR in-order to execute a query (which takes
about 0.7 ms from their measurements). Whereas in our
work, we use the query plan and directly execute a query
using the pre-compiled operators. Furthermore, the LLVM
IR interpreter is fine-grained containing hundreds of custom
written operators for efficient processing. Though this is ef-
ficient to switch between the execution modes, they show
that the bytecode interpreter is three times slower than the
un-optimized machine code. Our work mitigates this over-
head by using coarse-grained operator implementation.

Another work on improving performance using material-
ization and vectorization in compiled execution is explored
by Menon et al. [8]. Their relaxed operator fusion model
improves performance by introducing staging points to ma-
terialize the results of intermediate operators in a compiled
code engine. Our work can benefit from these staging points
to decide on a more granular level to switch between the ex-
ecution paradigms.

Due to execution time being comparable with hand-written
code, compiled execution is widely adapted, our hybrid sys-
tem can complement these works by improving their re-
sponse time [9, 11, 7].

Kersten et al. [5] have built the vectorized and compiled
query processing engines using compatible implementations
for a fair comparison of these two processing models. Their
implementation serves as the base for our work.

Various hybrid models combining pull and push-based
models are available. These models can also include our
technique to hide their compilation latency [2, 12]. Other
than traditional DBMSs, Spark SQL contains the catalyst
optimizer which supports code generation during runtime [1].
Our work can provide improved execution time for this sys-
tem.

3. PRELIMINARIES ON IN-MEMORY
QUERY EXECUTION MODELS

Query engines are the chassis of a DBMS. All other com-
ponents revolve around how a query is being processed.
The current DBMS engines can be split into either pull-
based or push-based engines. The more traditional pull-
based engine or the volcano model provides high portability
of operations for the cost of materializing all intermediate
data [4]. This penalty of materialization was later improved
by the vectorized processing engine that uses cache resident
data to improve performance [14]. A push-based or code-
generation engine avoids such unnecessary materialization
of values by keeping the data within registers as long as
possible. However, this advantage comes at the cost of com-
pilation time [9]. In this section, we detail these two execu-
tion models.

3.1 Vectorized Execution
Vectorized processing follows batched execution for query

processing. It is an interpreted execution engine where each
operator consumes a vector of input values for processing.
The size of the vector thereby depends on the cache size of
the CPU. Though the operators work on cache resident data,
when it comes to operations like group-by, aggregation, or
hash-join, intermediate data are materialized into the mem-
ory before executing the next operation in the pipeline. This
forceful materialization of partial results leads to poor per-
formance. Apart from its materialization overhead, vector-
ized processing also suffers from overhead of function calls.
For example, a conjunctive selection repeatedly executes se-
lections on each of the columns and combines the results ei-
ther using a relaxed selection or a conjunction operation [5].

3.2 Compiled Execution
To improve data as well as code locality, a compiled query

engine generates code directly for a given SQL query [9]. In
the generated code, database operators are fused into one
pipeline, improving execution time [3]. To facilitate code
generation in this model, producer and consumer functions
are included in these operators. Since we are compiling op-
erators together before the start the execution, we can have
arbitrary combinations of input (e.g., a conjunctive selection
can be custom-built for the selection criteria based on the
input query).

Though the compiled query execution model provides im-
proved data and code locality along with faster execution
time, it suffers from the overhead of compiling an SQL query
before execution [10]. This compilation time can vary de-
pending on the underlying compiler. Therefore, a poor com-
piler might lead to a compilation time that is higher than
pure execution time of certain queries.

4. HIDING COMPILATION LATENCY US-
ING VECTORIZED EXECUTION

From the introduction to query compilation, we know that
compilation time has an important impact on performance.
To hide the compilation overhead, we propose to start query
execution concurrently with query compilation using an in-
terpreted query engine. Vectorized execution suits this sce-
nario well with its memory-friendly interpreted processing
engine. Furthermore, vectorized engines are robust, well-
maintained, and well-established engines for several years
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now [13]. Hence, we propose a hybrid engine with both ex-
ecution models.

In the following, we first present the overall workflow of
our hybrid query engine –Tether– and afterward, we intro-
duce how to switch query execution given the pipeline break-
ers aggregation, hash join, and hash aggregation.

4.1 Tether: A Hybrid Query Execution En-
gine

The main task for Tether as the connecting engine be-
tween compiled and interpreted (i.e., vectorized) processing
is to take an input query and transform it into a hybrid
query that is started on the vectorized engine and finalized
on the compiled engine. For a more detailed description, we
use an exemplary query shown in Figure 2. The example
query has: 2 selections, 1 simple aggregation, 1 group-by
aggregation, and 2 equi-joins, which leads to five possible
pipelines labeled P1 to P5. Given this query, a question
arises: how to do a minimal-invasive switching between both
execution models as they execute queries differently (cf. Sec-
tion 3). This makes switching hard since a common way of
handshaking is needed. In fact, there are two important
considerations: we have to decide how and when to share
intermediate results between both execution models. In the
following, we answer the how by using pipeline breakers and
the when as after finalizing the current processed vector.

Pipeline Breakers as Switching Points
A vectorized engine materializes intermediate results after
each operator. However, these intermediate results cannot
be simply shared with a compiled query at an arbitrary point
in the query pipeline. This is because compiled execution,
as a push-based model, does not consume/materialize inter-
mediate data explicitly from every single operator.

One exception to the no-materialization rule of compiled
execution is a pipeline breaker [10]. Pipeline breakers force
compiled execution to materialize their intermediate values
into memory (marking the end of the pipelines P1 to P4)
before executing the next operator of the pipeline. Hence,
the key idea of our hybrid processing model is to use these
natural materialization points of a query for switching be-
tween vectorized and compiled query execution. From the
TPC-H benchmark, we have identified three pipeline break-
ers commonly present in a query that are useful in connect-
ing vectorized execution with compiled execution: aggrega-
tion, hash aggregation (i.e., group-by) and hash join. Hence,
by implementing a common data structure for these oper-
ations, we can easily switch execution from vectorized to
compiled execution.

Inter-Pipeline Switching
With pipeline breakers at both ends of a pipeline, our hybrid
processing engine processes at least one pipeline of a query
partially using vectorized execution. In our example query
from Figure 2, this is P1, which materializes results in a
hash table for each vector. However, depending on the com-
pilation overhead and the input size, more than one pipeline
might be processed by vectorized execution. Hence, we have
to compile the pipelines such that their processing can start
at any pipeline breaker.

When vectorized execution hits a pipeline breaker and the
compilation is done, a switch can happen. The intermediate

R1

R2

y=3

z;count(*)

z=c

x=7

z=c

P2

P1

P3

P4

next()

next()

count(*), sum(a), max(b)P5

R3
Figure 2: Exemplary hybrid query execution plan in Tether.

results processed by the vectorized execution are then ma-
terialized and forwarded to the compilation execution. This
provides minimal waiting time for compiled execution after
the compilation is finished.

Tether’s Workflow
The general workflow of our hybrid execution system Tether
consists of three phases as given in Algorithm 1. First,
we start by compiling the pipelines for compiled execution
(CmplPipeline) using a compiler thread. The thread adds
the instructions for merging the partial results of vectorized
execution to the corresponding pipeline before compiling
them. Once compiled, the thread sets the CompilationDone

flag as TRUE.
Second, while compiling, we execute the vectorized oper-

ations in the pipeline P1, which processes values until the
following pipeline breaker. In the running example, we ma-
terialize the hash table built for the join operation (z = c).
Additionally, the current index of the input scanned from re-
lation R1 is also remembered (ProcessedData) so that the
compiled execution can continue building the partial hash
table of vectorized execution.

Finally, once the CompilationDone flag is set, we interrupt
the vectorized execution, forward the pointers of the hash
table and relation R1 plus the index of already-processed
tuples to compiled execution. Afterward, the compiled ex-
ecution finishes the materialization of the pipeline breaker
values based on the current shared index and continues with
the next pipelines (P2 to P5) producing the final result.

In the following sections, we detail how each pipeline breaker
is realized in the two paradigms and how they are executed
in our hybrid execution engine Tether. We base the opera-
tor implementations of the three pipeline breakers on those
from the framework of Kersten et al. [5], as they have proven
to be a sophisticated baseline for both models.
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Algorithm 1: Tether execution flow.

Data: CmplPipeline,VecPipeline
Result: result
bool CmplDone = FALSE;
func* CmplFunc =
CmplThread.spawn(CmplPipeline);

VecPipeline→PipelineBreaker.open();
ProcessedData = 0;
do

ProcessedData += VecPipeline.start.read();
VecPipeline→PipelineBreaker.materialize();

while (!EndOfStream & !CmplDone);
CmplFunc(VecPipeline→PipelineBreaker.data,
ProcessedData);

4.2 Pipeline Breaker: Direct Aggregation
Direct aggregation is the least challenging of all the pipeline

breakers we have considered. The aggregate results are com-
puted after a single pass over the input columns. Hence,
while switching, only partial results might have been pro-
cessed by vectorized execution. Hence, we have to forward
these partial aggregates from vectorized execution along with
the last processed index to compiled execution for continu-
ing aggregation. Notably, a query can have more than one
independent aggregation to be computed, resulting in multi-
ple partial results being forwarded from vectorized to com-
piled execution. Such a query with multiple independent
aggregates (e.g., TPC-H Q1 without group by clauses) is
computed differently by vectorized and compiled execution.

Compiled Aggregation
Compiled execution generates a custom aggregation func-
tion to aggregate all column inputs simultaneously. There-
fore at any given instant, as depicted in Figure 3, all tuple
values of the respective columns (a & b in the figure) are read
and aggregated one after another. At any point in time, we
obtain the partial results of all the independent aggregates
(count(*),sum(a),max(b)). For example, the aggregates in
pipeline - P5 of Figure 2 will be computed together.

a

A
gg

re
ga

te
 (

1 
- 

3)

b

count(*)

sum(a)

max(b)

time

Figure 3: Compiled aggregation.

Vectorized Aggregation
In contrast to compiled execution, vectorized execution ag-
gregates one vector at a time. Therefore, for our running
example, partial aggregates will be produced for each pro-
cessed vector creating the currently aggregated count(*),
the aggregated sum(a) as well as the aggregated max(b) as
shown in Figure 4.

a Agg_count()

Agg_sum()

Agg_max()

time

a

b

count(*)

sum(a)

max(b)

Figure 4: Vectorized aggregation.

Hybrid Aggregation
Connecting the execution paradigms using aggregation re-
quires that the partial results from vectorized execution can
be forwarded to compiled execution. Since compilation can
be ready at any point during vectorized execution, predict-
ing the exact number of independent aggregates computed
by vectorized execution is a complex task. Instead, our idea
is to simply update these partial results in compiled execu-
tion. To this end, we add the information about the current
column and its last visited index along with the partial ag-
gregates. Figure 5 shows the partial aggregates (p count,
p sum, p max) of vectors (in green) computed. These partial
aggregates are the input for the compiled execution engine,
which updates them with the aggregates of the remaining
input in a tuple-at-a-time fashion.

time
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 -
 3

p_count 

p_sumAgg_sum()

p_maxAgg_max()

count(*)

sum(a)

max(b)

Agg_count()

a

b

a

a

b

Compilation finished

Figure 5: Hybrid aggregation.

4.3 Pipeline Breaker: Hash Join
A hash join breaks a pipeline by materializing input values

into a hash table. Once the hash table is built, it is probed
by the next pipeline for join pairs. In our hybrid engine,
the hash join becomes the connector between the execution
engines. To make the hash join compatible across these
paradigms, we keep the same hash table implementation as
well as the same hash function. This is mainly to have a
common set of methods to insert and probe a key within
the hash table. Since the execution switches from vector-
ized to compiled execution, the hash function that favors
efficient processing in compiled execution is chosen. Such
a suitable hash table and hash function combination are
shown to be chained hashing with the CRC32 hash func-
tion [5]. Even though we have common techniques across
the execution engines, we still have variations in the way
the runtime populates the hash tables in order to have the
best performance.

In the following, we explain the two possible states that
exist when switching from one engine to the other. In the
first possible state – i.e., a hybrid hash build, the build phase
is only partially done by vectorized execution when compi-
lation finishes. Compiled execution follows up by building
a separate hash table for the remaining tuples. The sep-
aration of hash built between the engines is to avoid any
unnecessary penalties of populating a vectorized hash table
in compiled execution. The main issue here is that the en-
gines populate the hash tables differently. On the one hand,
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if (ht.contains(o_orderkey[i])
&& (name = ht1.findOne(o_custkey[i])))
{

entries.emplace_back( ... );
}

Listing 1: Compiled hash probe.

/* hybrid Code */
if(ht.contains(o_orderkey[i]) {

// Vectorized probe
runtime :: CRC32Hash h1;
uint64_t output = h1(o_custkey[i]);
for (auto entry = vwHT.find_chain(output );

entry!= runtime :: Hashmap ::end();
entry = entry ->next) {

if (entry ->o_custkey == o_custkey[i]) {
entries.emplace_back( ... );

}
}

// Compiled probe
if(ht0.contains(o_custkey[i])) {

entries.emplace_back( ... );
}
}

Listing 2: Hybrid hash probe.

threads in hyper cooperatively populate a single hash table.
On the other hand, threads in the vectorized engine popu-
late their private hash table first followed by a global merge
step. In the second possible state – i.e., a hybrid hash probe,
vectorized execution has already finished building the hash
table and now the compiled execution probes the hash table.

Hybrid Hash Build
During switching, the vectorized execution might have only
built a partial hash table. Inserting into vectorized hash ta-
bles from compiled execution is not efficient. In this case,
compiled execution first reads the remaining tuples aggre-
gating them in a separate hash table.

From our example query in Figure 2, considering the switch-
ing point is at the join R1.z = R3.c, R1.z column values
are present in two different hash tables. Once built, both
hash tables (the vectorized and compiled hash table) will be
probed (on R3.c from our example) for each tuple. There-
fore, compiled execution must include code to probe the
hash table of vectorized execution to find join pairs.

Hybrid Hash Probe
Vectorized execution, due to its working granularity of a
whole vector, requires a sequence of steps for hash probing.
First, the hash values are computed for input vectors. Next
using the hash values, the target match locations for vectors
are identified. Finally, the values in the target locations
are compared to identify join pairs. We circumvent these
steps in compiled execution by directly computing the hash
value of a given key and probing through the table using the
traversal functions of chained hashing.

The inclusion of the additional probe steps of the vec-
torized hash table increases the lines of code compared to
the naive code given in Listing 1. In Listing 2, we depict

all hybrid probing steps. For every input key, we first look
into the partial hash table of the vectorized engine followed
by probing the remaining values in the hash table of the
compiled engine.

4.4 Pipeline Breaker: Hash Aggregation
The final pipeline breaker that we consider in our work is a

hash aggregation (z; count(*) in the running the example).
Like the hash join, a hash aggregation does two passes over
the input data for computing the results.

In the first pass, the input is hashed and values are grouped
in the hash table. In the second pass, the aggregates for
each of the groups are calculated. Furthermore, with multi-
threaded execution, each thread has to do these two passes
plus an additional merge stage, which is necessary to aggre-
gate the partial results from all threads.

Hybrid Hash Aggregation
To connect vectorized with compiled execution, we have to
forward the partitioned group values from vectorized to com-
piled execution to aggregate them. Since hash aggregation
follows a similar execution of hash join, the compiled exe-
cution also starts with building its own hash table for the
remaining input values along with aggregating them. Fi-
nally, once the results for compiled execution are ready, we
update them with the partial results from vectorized execu-
tion. Additionally, in the case of multi-threaded execution,
compiled execution also takes care of merging the partial
results from all the individual threads of vectorized execu-
tion.

5. EXPERIMENTS
In this section, we compare the performance of our hy-

brid system Tether with a stand-alone compiled and vec-
torized execution for different data sizes and present our
observations. To this end, after a short introduction of the
experimental setup, we first discuss the incurred compila-
tion overhead due to our added switching points (e.g., from
Listing 2). Afterward, we investigate the benefits and draw-
backs of Tether on simple and complex queries with several
pipeline breakers.

5.1 Experimental Setup
We conduct our experiments on an Intel R© Xeon R© Gold

6130 CPU. The machine runs an Ubuntu 18.04. with CLANG
version 6.0. For our execution, we parallelized the queries
using 16 threads.

Comparable Implementations. As mentioned earlier, the
compatibility of data structures and operator implementa-
tions between compiled and vectorized execution is a key
factor for our system. To this end, we use the operator im-
plementations of Tectorwise and Typer with their common
data structures1. Our Tether as a hybrid engine uses the
vectorized operator implementations of Tectorwise and the
compiled pipeline implementations of Typer and adds cus-
tom code for the switching points. The stand-alone engine
of Typer does not contain direct code generation or compi-
lation. Hence, we also directly compile the LLVM code of

1https://github.com/TimoKersten/db-engine-paradigms
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a target query and link them with our execution in runtime
and record the time as compilation time. To this end, we
use clang 6.0 for compilation (with -O3 flag) and for build-
ing the machine code. Similar to Hyper, we consider only
the time taken for compiling the code for our experiments.

Workload Description. We use the TPC-H benchmark
with scale factors ranging between 100-200 and its queries
Q1, Q3, Q6, and Q18 for our experiments. These queries in
specific contain the different pipeline breakers that we dis-
cussed earlier in the exemplary query plan. we use the query
plan of compiled execution for our execution 2. For the com-
parison, we measure the execution time for our system and
compare it to the runtimes of vectorized and compiled ex-
ecutions. Please note, we always include compilation times
into the reported execution times of compiled execution and
our hybrid system.

Experiments. From the selected TPC-H queries, we derive
three important experiments that show the benefits and
drawbacks of our hybrid engine Tether. In the first ex-
periment, we are interested in the additional compilation
overhead due to our compiled switching points that add
extra code to the compiled engine. In the second exper-
iment, we investigate simple queries like Q1 and Q6 that
contain a single pipeline and compare Tether’s performance
to the performance of the other two standard execution en-
gines. Since these two queries have rather small and short
pipelines, switching between both models should add con-
siderable overhead, we are interested whether we can still
benefit from hybrid execution. In the third experiment, we
look at queries with several pipeline breakers, i.e., Q3 and
Q18, and investigate good switching points for Tether in
order to outperform single-engine performance.

5.2 Experiment 1: Hybrid Compilation Over-
head

Since Tether includes additional compiled code to merge
the partial results of its vectorized engine into its compiled
engine, we first investigate the resulting overhead for com-
piling the queries at the first pipeline breaker. Subsequently,
we investigate how the compilation time changes when com-
piling the query more cleverly at later pipeline breakers.

Compilation Time Comparison
The TPC-H queries we presented above have different pipeline
breakers in their initial pipelines: Q1 contains hash aggre-
gate, Q6 has a direct aggregation and Q3 & Q18 are using
hash joins. The comparison of compilation times for naive
(i.e., Typer), hybrid (i.e., Tether’s compilation time when
the vectorized engine runs concurrently) and hyrid with-
out any concurrent execution for these queries are depicted
in Figure 6. We use a single thread for compilation and
use clang for compiling the C++ pipeline code3. We see
that concurrent processing has a minor impact in the com-
pilation time, and this is mainly due to the overhead of
handling the compilation thread. We can also see that the

2Plans provided by hyper-DB interface: https://hyper-
db.de/interface.html
3Our experiments have shown that, of course, different com-
pilers will lead to different compilation times. However, the
ratio of compilation times between the stand-alone and hy-
brid engine is always the same.

overhead of compiling code with additional merge instruc-
tions is between 14ms to 42ms. The worst compilation time
is recorded for Q1 or in other terms for merging results of
the hash aggregation. This is mainly due to the additional
aggregation step required to merge the partial aggregates
of vectorized execution with the aggregates of compiled ex-
ecution. Furthermore, due to parallel execution, we have
multiple partial results from vectorized threads which have
to be merged with the results of compiled threads.

On the other hand, Q6 (i.e., direct aggregation) leads to
the smallest compilation overhead. In this case, we simply
perform one additional aggregation step to merge the results
of compiled execution with vectorized execution. The merge
of the remaining queries (Q3 and Q18) simply includes the
probe instructions of vectorized execution along with prob-
ing of compiled execution, which incurs only a small over-
head for compilation.

Although we have additional costs for compilation, we will
in the following hide the compilation totally with vectorized
execution. Furthermore, depending on the data size and
pipelines in a given query, vectorized execution might pro-
cess more than one pipeline before we finalize compilation.
Therefore with such workloads, we refrain from compiling
the pipelines that are completely processed by vectorized
execution. This reduces the overall execution time from the
naive compilation of a complete query.
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Figure 6: Stand-alone vs. hybrid compilation time.
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Compilation Time Comparison of Pipelines With Par-
tial Merge Instructions
To understand the impact of compiling only partial pipelines
of a query, let us consider the pipelines of Q3. In total
there are three pipelines and pipeline breakers in the query:
two hash joins (HJ1, HJ2) followed by a hash aggregation
(HA) before producing the results. By using these differ-
ent pipeline breakers as the switching points, we incur dif-
ferent compilation times. The compilation time w.r.t. the
different pipelines for Q3 is given in Figure 6. By compiling
partial pipelines, we outperform the naive compilation sig-
nificantly leading to better exploitation of compiled query
performance. However, this in turn means that we have to
delegate a complete pipeline to vectorized execution. Hence,
the question that we want to answer in Experiment 3 is:
which of these pipelines provide the best trade-off between
compilation time and vectorized execution.

5.3 Experiment 2: Single-Pipeline Queries
In this experiment, we compare the execution times of our

hybrid system with the stand-alone compiled and vector-
ized execution engine for single-pipeline queries. We chose
queries Q1 and Q6 because they have only a single pipeline
to process. Therefore, we have only one possible merging
point, i.e., we merge the partial results of vectorized execu-
tion into the partial ones from compiled execution for the
complete query. For these queries, a high compilation time
would lead to the circumstance that vectorized execution
processes the input data completely before we could switch
the processing engines. Such characteristics are visible in
the results for the queries in Figure 7. In Figure 7(a) & (c),
we compare the runtime of the three different engines for
different scale factors of the TPC-H benchmark. Further-
more, we depict the compilation time for all queries, which
is rather stable across different scale factors. In Figure 7(b)
& (d), we break the execution time of Tether down to show
the ratio of processed tuples in the vectorized engine com-
pared to the remaining tuples that are processed with the
compiled engine of Tether.

Due to the compilation time, we see that the switching
point for the queries in Figure 7(a) & (c) are around scale
factor 140 and 160, respectively. As expected, our system
follows the performance of vectorized execution until the
switching point. After the switching point, it is clearly vis-
ible that our hybrid system deviates from vectorized exe-
cution due to an increased fraction of tuples that are pro-
cessed in the better performing compiled engine. For Q1, the
change in performance is slightly affected by the additional
merge step. However, this additional impact is negligible
considering the data shared among the two systems. We see
from Figure 7(b) that even with processing only 30% of data
in the compiled engine, we already outperform both engines.
A similar case can be also seen for Q6 (cf., Figure 7(c)).
Since, it is a comparatively simple query, compiled execu-
tion processes only up to 20% for the chosen scale factors
of input data at the moment. However, with increasing the
scale factor, the amount of data processed by compiled ex-
ecution will also increase and, hence, improve Tether’s per-
formance. Since only a fraction of total input is processed
by compiled execution after the cut-off point, our execution
time improves accordingly. Overall, our Tether approach is
2.3 times faster than stand-alone compiled execution and
1.2 times faster than vectorized execution after the cut-off

point. Now that we saw the performance of single pipelines,
we experiment on the impact of several switching points in
a query in the next section.

5.4 Experiment 3: Informed Switching Points
for Multi-Pipeline Queries

Queries with multiple pipelines require a closer look for
selecting the right switching point. To better analyze the im-
portance of the switching points, we show the performance
difference of Q3 executed with all possible switching points
in Figure 8.

As discussed, Q3 is composed of three pipelines. There-
fore, depending on the data size, vectorized execution could
have finished some of the pipelines before compilation is
complete. By injecting the switching point at the hash
join, we see that we are either worse than or on par with
the stand-alone compiled performance. This shows two im-
plications: 1) a hybrid hash probe in the compiled engine
of Tether incurs a performance penalty, 2) the vectorized
engine of Tether is not completely busy until the compi-
lation has finished. To have a better picture of the most
performance-critical pipeline, we measured the execution
time for individual pipelines and present them in Figure 8(b).
We see that 60 % of Q3 is spent on the final pipeline (i.e.,
the hash aggregation). Using this pipeline as the switching
point, we see a drastic improvement in performance. Since
hash aggregation is the final pipeline in Q3, the execution
characteristics are similar to that of Q1 and Q6. When
compilation takes longer then vectorized execution, Tether
follows the performance of vectorized execution. However, if
the compilation finishes before vectorized execution, Tether
outperforms the performance of vectorized execution due to
compiled execution. Thus, similar to the case of Q1 and
Q6, our overall improvement by Tether is about a factor
of 2 compared to compiled execution and 1.5 to vectorized
execution after the cut-off point.

As a final challenging query, we investigate Q18 with 5
pipelines to show the impact of changing the switching points
between the engines. From Figure 9(a), we see that even
with less than scale factor 100, compilation time is less than
the total execution time of vectorized execution. Hence,
during the transition from vectorized to compiled execu-
tion, Tether processes only a partial result of some internal
pipeline. This connection pipeline, similar to that of Q3,
has to be identified.

With compilation time being static for all the datasets,
depending on the data size, vectorized will be processing a
different part of the query pipeline (the bigger the amount
of input data, the less pipelines have been already processed
at the time of switching). Below are the pipelines for Q18:

1. Build customer hash table.

2. Group by lineitem.

3. Build lineitem hash table.

4. Probe orders over customer and lineitem tables and
build the final table.

5. Probe lineitem and compute aggregates.

Out of these, the first pipeline on the customer table has
only few values to process. Therefore the second pipeline
with grouping of the lineitem table is taken as our cut-off
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(a) Query 1 - Execution time.
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(b) Tether’s runtime breakdown for Query 1 -
Data processed in individual engines.
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(c) Query 6 - Execution time.
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(d) Tether’s runtime breakdown for Query 6 -
Data processed in individual engines.

Hybrid execution Compiled execution Vectorized execution

Hybrid compile time (HC) Stand-alone compile time (SC)

Figure 7: Evaluation for queries with single pipeline

pipeline-breaker. The execution of this query plan shows
that we have the performance improvement from both en-
gines only after SF 160. To better understand the impact of
the switching points, we depict the percentage of time spent
on each of the execution engines in Figure 9(b).

For scale factors 100 to 150, vectorized execution is able
to process its given pipeline completely before the hybrid
query is compiled. Therefore for these scale factors, we have
a worse execution time than vectorized execution. With an
increasing data size, this gap reduces as vectorized execution
has to process more data.

One way to reduce the wait time is to move the switch-
ing point to the next pipeline, i.e., building the hash table
of the lineitem table. However, this will not be an opti-
mal choice. The subsequent pipeline, i.e., order’s probing
pipeline, probes over both the built hash tables of lineitem
aggregates and customer from vectorized execution. With
the first three pipelines executed by vectorized execution,
compiled execution has to issue another probe call to the
built customer table as well as a partially built lineitem ta-
ble. These probe calls, as the results of Q3 show, are way too
expensive. Hence, we keep using the second pipeline breaker

as a switching point. Thus, with a penalty of smaller wait
times, our Tether execution outperforms compiled execu-
tion by a factor of 1.5. Once we bridge the execution gap,
we outperform vectorized execution by a factor of 1.2.

In summary, complex pipelined queries require a complete
analysis to decide on the right switching points. Therefore,
such queries could benefit from an optimizer providing these
switching-points during runtime. We consider this as our
future work.

6. DISCUSSION
From our experiments, we show that our approach has

achieved the overall best execution time. Our system is the
fastest or it is on par with the execution time of vectorized
execution, which completely hides the compilation time. On
average, we are three times faster than the combined exe-
cution time for compilation and compiled query execution.
We also outperform vectorized execution after the switching
to compiled execution by up to a factor of two for bigger
datasets. Based on the results, we have the following obser-
vations and discussion points:
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(a) Query 3 - Hybrid execution with different switching points.
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(b) Tether’s runtime breakdown – Percentage of
time spent in each pipeline.

Hybrid execution - Hash aggregate Hybrid execution - hash join 1 Hybrid execution - hash join 2

Compiled execution Vectorized execution Hash aggregate - compile time (HA)

Hash join 2 - compile time (HJ2) Hash join 1 - compile time (HJ1) Stand-alone compile time (SC)

Figure 8: Impact of switching points in Q3.
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(a) Query 18 - Execution time.
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(b) Query 18 - Time spent on execution engines.
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Figure 9: Execution performance for Q18.

Hiding compilation: An overall positive result of our ex-
periments is that Tether effectively hides compilation time.
Hence, since starting the processing concurrent to compila-
tion reduces the overall amount of data to be processed, the
overall performance of Tether is above the performance of
stand-alone systems.

Merging overhead : Despite the impressive performance of
Tether, its main drawback is the inclusion of an extra merg-
ing step in the pipeline breaker. This leads to a sometimes
increased compilation time and adds a processing overhead
to Tether’s compiled execution engine. Such overhead is vis-
ible in the performance difference of stand-alone compiled
versus Tether’s compiled execution in Q1 (cf., Figure 7(a)).
Hence, one significant optimization space is the development

of efficient merging strategies, that allow both engines to
handshake more efficiently on switching.

Furthermore, especially when using the hash probe as a
switching point, it is visible that the functional invocation of
vectorized primitives inside compiled execution affects per-
formance negatively. Therefore, important future work is to
implement custom pipeline breakers that can be optimally
executed in vectorized execution and read without overhead
within compiled execution.

Performance critical pipelines: Another observation from
Q3 is that different pipelines contribute to a different extent
to the overall execution time. Especially pipelines that are
composed of complex operators and process a large input
dataset are promising for being started in vectorized execu-
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tion. By identifying these pipelines and sharing their results,
we can improve the overall performance significantly.

Selection of the right pipeline breaker : For the best per-
formance of our hybrid system Tether, an optimal switching
point is required. Such an optimal switching point is present
at the cross-point of the performance impact of vectorized
processing of the input query, input data size, and the com-
pilation time. Hence, it is possible that vectorized execution
processes more than one pipeline. As a consequence, an op-
timizer should choose the right pipeline breaker to switch
between both engines of Tether.

Data size vs. compilation time: For datasets with consid-
erably smaller data sizes, vectorized execution might com-
plete processing the workload before compilation finishes. In
this case, it is not beneficial to start compilation. Therefore,
the query optimizer should decide on the right execution
model based on the input sizes and the query compilation
time.

7. CONCLUSION
In this work, we aim for solving the biggest pain-point of

compiled execution: compilation times. To this end, we in-
vestigate whether its competing query engine, a vectorized
engine, can help in effectively hiding compilation times. This
leads to our hybrid engine Tether that starts query process-
ing in its vectorized engine and after compilation finished,
continues query processing in its compiled engine.

For switching between the execution paradigms, we use
pipeline breakers as a natural switching point. We realize
such a data sharing between the execution engines using the
pipeline breakers: aggregation, hash aggregation, and hash
join operators.

From our results, we show that by switching from vector-
ized to compiled execution we reach the best performance
compared to both, vectorized and compiled execution. In
fact, hiding compilation time using vectorized execution can
improve performance by up to a factor of three compared
to stand-alone vectorized or compiled query performance.
Therefore, our Tether framework shows that query process-
ing can be significantly improved when combining the fea-
tures of the two state-of-the-art approaches.

However, our results also show that choosing the right
pipeline breaker for switching between the engines is of sig-
nificant importance. Hence, the query optimizer has to be
extended in future work to incorporate these design deci-
sions.
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