A DBMS-centric Evaluation of BlueField DPUs on Fast Networks

Lasse Thostrup Daniel Failing
Technical University
of Darmstadt of Darmstadt

ABSTRACT

Modern networks have evolved significantly in the last years. First,
network speed has increased considerably and thus the use of low-
overhead techniques such as RDMA has become more and more
important to design efficient distributed DBMSs. Second, a recent
trend in modern networks is that in addition to high-speed data
transfer using RDMA, network components such as switches and
NICs become programmable by providing additional computation
on the device, such as DPUs (Data Processing Units). Such devices
enable processing or manipulation of data as it is traversing the
network and that way allow distributed systems to offload compu-
tation. While for the recent generation of RDMA-based DPU cards,
there is no study that shows the offloading capabilities of DBMS
tasks to such RDMA-enabled DPUs.

Therefore, in this paper, we aim to provide a first systematic study
to evaluate the basic performance characteristics of the BlueField
network cards in the context of typical DBMS operations. For the
evaluation, we analyze the offload potential of using BlueField as a
RDMA-enabled DPU for two important use cases: (1) a remote B-
tree and (2) an end-host sequencer (i.e., remote counter). We chose
these two use cases since they represent core tasks where RDMA
has shown benefits. As a result, in our evaluation, we show that
the recent generation of RDMA-based Bluefield DPUs can provide
several benefits and can not only reduce access latencies but also
improve the throughput. However, offloading computation to the
DPU needs a careful design and naively offloading all computation
to the DPU often leads to performance degradation.

1 INTRODUCTION

Motivation. In-memory DBMSs have become ubiquitous in acade-
mia and industry and many commercial offers are available today
[3, 6, 7]. This is not surprising as the performance they offer is still
unmatched compared to disk-based systems. However, a major chal-
lenge of in-memory DBMSs is that large data sets often do not fit
into the memory of a single machine or the processing capabilities
of one machine are insufficient. To that end, scale-out DBMSs are
becoming the predominant solution to handle ever-increasing data
set sizes and leverage more processing by utilizing more networked
machines. Especially, DBMSs which are purpose-built for the cloud
and can scale out or in on-demand are highly requested. As a core
architecture for modern scale-out cloud DBMSs, disaggregated ar-
chitectures have been crystallized which separate compute and
storage. A prominent example of this architecture is Snowflake [5]

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission
by emailing info@vldb.org. Copyright is held by the owner/author(s). To Appear
in the 13th Workshop on Accelerating Analytics and Data Management (ADMS’22),
September 2022, Sydney, Australia.

Technical University ~ Technical University

Tobias Ziegler Carsten Binnig
Technical University

of Darmstadt of Darmstadt & DFKI

but there are also other DBMS such as FoundationDB which take a
more radical approach to separate not only storage and compute
but also other database components in the pursuit to scale them
independently [30].

However, with such disaggregated solutions, the network is
increasingly on the hot path since data more often has to be fetched
over the network. To keep up with this paradigm shift, networks
are becoming faster with link speeds in the hundreds of gigabits,
but also bringing rise to more powerful low-overhead networking
technologies such as RDMA (Remote Direct Memory Access) which
has influenced DBMS developments in academia and industry alike
[11, 15, 17, 18]. The key driver for RDMA’s success is that it offers
low latencies in the single digit microsecond range as well as high
throughput and thus has shown major gains for very different
DBMS workloads.

A recent trend in modern networks is that in addition to high-
speed data transfer using RDMA, network components such as
switches and NICs become programmable by providing additional
computation on the device, such as DPUs (Data Processing Units).
Such devices thus enable processing or manipulation of data as it
is traversing the network and that way allow distributed systems
to offload computation [9, 10, 31]. The DPUs that are available
today span far in terms of compute architectures, such as ASICs,
FPGAs and general CPU cores, and therefore come with trade-offs
in programmability and performance.

For the recent generation of RDMA-based network cards, DPUs
are also becoming available. One of these devices which can be
combined with RDMA is the BlueField Network Interface Card [21].
The BlueField card provides very flexible programmability due to
its general-purpose ARM CPU cores that are available as compute
resources on the DPU. Moreover, specialized ASICs for tasks such
as data encryption and decryption are available. While evaluations
have shown that security-related tasks or tasks to provide tenant-
isolation in data centers [4] can be provided in an efficient manner,
there is no study that shows the offloading capabilities of DBMS
tasks to such RDMA-enables DPUs.

Contributions. Therefore, in this paper we aim to provide a first
systematic study to evaluate the basic performance characteristics
of the BlueField network cards in the context of typical DBMS
operations. For the evaluation, we analyze the offload potential of
using BlueField as an RDMA-enabled DPU for two important use
cases: (1) a remote B-tree and (2) end-host sequencer (i.e., remote
counter). We chose the remote B-tree because it is a frequently
used data structure for DBMSs and it is also used in disaggregated
architectures to avoid transferring all data across the network [23,
33]. On the other hand, the end-host sequencer is a commonly used
building block for many distributed system tasks such as global
ordering [16], for coordinating write access to shared memory [2],
or to implement optimistic concurrency control [26].

For these two scenarios, we compare baselines that rely on ex-
isting one-sided and two-sided RDMA primitives with a solution


https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

that can use the DPU as an offload engine. For example, for an
RDMA-based B-tree such as [33], the DPU could implement the
tree traversal natively on the DPU. As such B-tree operations can
be implemented in one round-trip from the compute layer to the
storage layer without involving the CPU of the storage nodes. More-
over, in addition to compute resources DPUs often come with their
own memory which allows them to store the B-tree in the DPU
instead of using the CPU memory. Based on these observations, we
thus aim to analyze whether a better performance can be observed
for the two use cases above.

As aresult, in our evaluation, we show that the recent generation
of RDMA-based BlueField DPUs can provide several benefits. First,
we show that we can reduce the network latency by avoiding the
PCle path from the NIC to the host which adds a non-negligible
overhead to the overall latency [19]. Second, if DPUs are used as
additional compute resources to the remote CPUs, we show that
also overall gains in throughput can be achieved. However, offload-
ing computation to the DPU needs a careful design and naively
offloading all computation to the DPU often leads to performance
degradations since the computational resources on the DPUs are
often less powerful than the CPU in the remote host.

Outline. We first cover the background of the BlueField DPU
and RDMA in Section 2 and next provide an overview of the exper-
imental setup in Section 3. We then present the benchmarking of
the before-mentioned use cases in Sections 4 to 6. Finally, we then
present our conclusion on the evaluation to outline the pros and
cons of offloading typical DBMS tasks to the BlueField DPU.

2 BACKGROUND

In this section, we provide the relevant background on RDMA and
the BlueField DPU.

2.1 Remote Direct Memory Access (RDMA)

RDMA has come to be an established state-of-the-art communi-
cation method for distributed data-processing systems [2, 13, 25—
27, 33], since it overcomes the overhead of traditional kernel-space
network stacks such as TCP/IP. To leverage RDMA, an applica-
tion can make use of different communication schemes that can be
categorized as one-sided (READ / WRITE) or two-sided (SEND / RE-
CEIVE) operations, which refers to the involvement of the sender-
& receiver-CPU in the communication. For one-sided operations,
only the sender-CPU is actively involved, but as a consequence, the
sender also has to decide where on the remote node the data should
be written or read. With two-sided operations, the receiver-CPU
is also actively involved in the communication since it needs to
issue RECEIVE requests before SEND requests can be issued on the
sender side, and it can thus also decide where to place data which
simplifies the remote memory management.

Especially the one-sided RDMA operations have seen high adop-
tion in distributed data processing systems since they allow sender
nodes to write into remote memory directly without involving ad-
ditional CPU cores of the receiving nodes. In a distributed DBMS,
this reduces the overall CPU resources involved in data transfer
and can thus lead to less resource consumption as well as overall
lower latencies in many cases [8, 32]. Moreover, one-sided RDMA

Host

PCle XGI

BlueField

ConnectX

ARM Subsystem

Port 0 [« Security Functions

Network Protocols

PCle x16

DDR4 Memory

PCle Switch

Packet Layer

Port1 [«

vSwitch (OVS)

Figure 1: Functional diagram of the BlueField DPU [20].

is thus, in particular, beneficial for disaggregated DBMS architec-
tures in which the storage servers have limited or sometimes even
near-zero computational resources [24, 28, 29]. On the other hand,
the applications of two-sided RDMA is typically within RPC-style
applications where the receiver node has to be actively involved in
the communication.

2.2 Data Processing Units

We next provide the relevant background on the Data Processing
Units (DPUs) that we use for our evaluation. Many of the major
network hardware vendors are including DPUs to their product
offerings, with examples like the Intel IPU, Broadcom Stingray,
AMD Pensando or the Nvidia BlueField. DPUs come with differ-
ent compute architectures ranging from P4 programmable ASICs
to general-purpose CPU cores. In our evaluation we focus on the
BlueField cards from Nvidia. The BlueField cards are equipped with
general-purpose ARM cores which are capable of executing any
program logic in contrast to the more rigid ASIC architectures. The
DPU runs its own OS (e.g., Ubuntu) and as such resembles another
independent server with an added set of networking features. Inter-
nally, as illustrated in Figure 1, the DPU consists of the networking
component (ConnectX) which provides hardware-offload of the net-
work stack for more efficient (i.e., less CPU intensive) networking.
Moreover, the ARM cores which act as computational resources on
the DPU are equipped with DDR4 memory and are connected to
the ConnectX over an internal PCle switch. The BlueField (from
the second generation on) is additionally equipped with hardware
accelerators for compression/decompression, encryption and regex
pattern matching.

The BlueField DPUs themselves are attached to the host CPU
via PCle. For controlling and routing the network traffic to the host,
the DPUs have different modes of operation. There is a Separated
Host mode, where the ARM subsystem will appear as an additional
computer on the network. When the remote machine uses this setup,
a client can decide where data should be transferred to, either the
ARM subsystem or the host. Another mode is the Embedded Mode,
where the ARM subsystem manages the network on behalf of the
host and controls the physical ports of the network card. With
that, the traffic from or to the host always goes through the ARM
subsystem. The Embedded Mode can be further specialized, such
that the host does not have access to the DPU directly. This mode



allows cloud providers to provide isolation and offloading of cloud
management tasks to the DPU.

To control the network communication in the Embedded Mode
and forward traffic with low latency, the ConnectX subsystem of
the BlueField offers a component called eSwitch. While the DPU
controls the physical network ports in the Embedded Mode, the host
as well as the DPU can have additional virtual interfaces which
are then available in the DPU for further network flow control.
By default, an OpenVSwitch process is running on the BlueField,
which controls the communication between physical and virtual
network ports. Flow rules controlling the flow of packets will be
configured in the OpenVSwitch, and, if possible, offloaded to the
eSwitch. In a typical network flow for RoCE (RDMA over Converged
Ethernet), the network packets are processed by the eSwitch, which
forwards the packet to the host or DPU based on the MAC addresses.
However, the eSwitch is limited to specific network headers, like
MAC or IP addresses, VLAN tags or TCP/UDP ports. As a result,
processing or manipulation of RDMA packet headers is not possible
in the eSwitch. Controlling traffic unsupported by the eSwitch
means that the packets need to be processed by the BlueField’s
ARM cores.

Overall, the host CPUs, the BlueField DPU and the ConnectX
subsystem are connected by a PCle switch. In contrast to other
vendors, BlueField DPUs do not have a dedicated DMA engine to
access the memory of the host. However, RDMA operations can
be used for the communication between DPU and host CPU. The
RDMA API then generates normal requests through the ConnectX
subsystem, which can then access both the host’s as well as the
DPU’s memory. In this way, not only can the DPU make DMA
requests to the host’s memory, but the host can also access the
DPU’s memory.

3 USE CASES AND EXPERIMENTAL SETUP

Use Cases. As mentioned before, in our evaluation we consider
two use cases to evaluate the performance of the BlueField cards.
In the first use case, we focus on a remote B-tree, which has already
been studied in the context of RDMA in previous work [33]. We
choose to evaluate and implement two remote B-tree strategies,
either with RPC over two-sided RDMA in Section 4 or completely
one-sided RDMA (i.e., no RPC) in Section 5. In the last use case we
evaluate an end-host sequencer, which is a common building block
in distributed systems, to e.g., assert a global order or coordinate
access to shared memory [2, 12]. We take a look at a sequencer
implemented only with one-sided RDMA or with RPC two-sided
RDMA.

Experiment Setup. We evaluate both available generations of the
BlueField DPUs — the BlueField 1 and BlueField 2 — which mostly
differ in their processing power; i.e., the BlueField 1 only runs at
a clock frequency of 800 MHz whereas the BlueField 2 runs at 2.5
GHz (details outlined in Table 1). In our experimental setup, we are
mirroring a typical disaggregated storage and compute setup. The
storage node is equipped with a BlueField 1 as well as BlueField 2
card to compare both DPUs. The storage server is running with 2x
Intel Xeon Gold 6326 CPUs, 512 GB DDR4 memory and PCle 4.0.
The compute node uses a non-programmable RDMA ConnectX-5
NIC and is equipped with 2X Intel Xeon Gold 5220 CPUs with 512

BlueField-1
BF1M332A

BlueField-2
BF2H332A

8x ARMvS A-72

8xX ARMvS A-72

Cru model 0 @ 800MHz model 3 @ 2.5GHz

Memory 1x 16 GB DDR4-2400 1x 16GB DDR4-3200
L1: 32 KB / core L1: 32 KB / core

Caches L2:1 MB/ 2 cores L2: 1 MB/ 2 cores
L3: 12 MB (shared) L3: 6 MB (shared)

Network ConnectX-5 ConnectX-6

Interfaces  2x 25 Gbps 2% 25Gbps

PCle Host PCle 4.0 X8 PCle 4.0 x8

PCle ARM PCle 4.0 X16 PCle 4.0 xX16

(01 Ubuntu 18.04 Ubuntu 20.04

Table 1: Comparison of BlueField-1 and BlueField-2.

Storage node
2% Intel Xeon Gold

Compute node
2% Intel Xeon Gold

cru 6326 @ 2.9 - 3.5 GHz 5220 @ 2.2-3.9 GHz
L1: 48 KB / core L1: 32 KB / core
Caches L2: 1.25 MB / core L2: 1 MB/ core
L3: 24 MB (shared) L3: 24.75 MB (shared)
BlueField-1
Network BlueField-2 ConnectX-5
Memory 16x 32GB DDR4-3200 8x 64GB DDR4-2666

(O Ubuntu 20.04 Ubuntu 18.04
Table 2: Server nodes used in the experimental setup.

GB DDR4 memory (Table 2). For both servers, we only use one
NUMA socket so as to not involve any cross-NUMA traffic effects.
Both servers are connected with RDMA over Converged Ethernet
(RoCE) v2. Note that the BlueField cards used in our setup only
provide maximum 25 Gbps per network link. However, since the
BlueFields NICs are equipped with two links, we can in total use
a 50 Gbps connection between the compute and storage server by
splitting the traffic over the two links.

We configure the BlueField cards in the Embedded Mode, and
configure two virtual interfaces which route to either the ARM
subsystem or the host. The routing is offloaded into the eSwitch
and does therefore not introduce measurable overhead on the ARM
subsystem.

4 USE CASE 1: REMOTE B-TREE WITH RPC

For the first use case we use a remote B-tree which is accessed via
RPC calls. To realize the RPC framework, we use two-sided RDMA
SEND/RECEIVE verbs with existing optimization such as door-bell
batching on both client- and server-side and inlining for reducing
PCle overhead [12]. For our B-tree, we use an OLC (optimistic lock-
coupling) synchronization protocol to allow scalable reads [14]. For
keys and values, we use 8 byte integers. We use either a mix of
50/50 read-write or read-only workloads as evaluation.

For all experiments in this use case (unless otherwise stated)
we use 8 threads (maximum number) on the BlueFields and on the
CPUs of the storage server respectively to achieve a comparable



setup. This is important for Section 4.1.2 when we show the offload
potential by varying the percentage of requests handled by the NIC.
Additionally, using 8 threads on the storage better reflects a typical
storage node with weaker CPUs than compute nodes [29, 34]. On
the compute server, we use 16 threads to attribute to the fact that
compute servers are typically equipped with more computational
resources and thus be able to generate sufficient workload in our
evaluation.

The evaluation of this use case is structured as follows: we first
report the throughput characteristics by first contrasting the two
BlueField generations and next dive further into using the BlueField-
2 in union with the host server. Subsequently, we evaluate the
latency characteristics to determine whether any latency benefits
can be observed for the BlueField DPU.

4.1 Throughput Characteristics

4.1.1  BlueField-1vs BlueField-2. The BlueField-1 was already launched

in 2017, and has in recent years been preceded by the BlueField-2.
We first aim to evaluate the performance improvement between the
two generations and their individual ability to handle B-tree RPC
requests. We initialize B-trees of different sizes in the local memory
of either the BlueField-1 or 2. Due to the very low clock frequency
of the BlueField-1 ARM cores (over 3X less than the BlueField-2)
and the fact that the RPC handling is typically very CPU intensive,
we expect to see a significant performance difference between the
two generations.

In Figure 2 we observe the achieved throughput for a (a) read-
only or (b) 50/50 read-write workload. For the smallest tree with 1
million (M) keys (tree size between 16 & 32 MB), the BlueField-2
outperforms the first generation by 2.4X for 50/50 read-write which
can be attributed to the difference in clock frequency (800 MHz &
2.5 GHz). Coupled with the fact that most of the tree can reside in
the CPU caches, this indicates they are both CPU bound. However,
with larger tree sizes, the BlueField-2 becomes increasingly memory
bound and the relative performance difference is decreasing.

Between the two workloads (read-only and 50/50) we can only
observe a slight difference in performance for the small tree with
1 M keys. The reason why barely any difference in performance
is observed for 16 M and 256 M is due to more sparse reads and
writes, and the reduction in throughput (i.e., a read has a smaller
chance of conflicting with a write).

To isolate the performance difference between the two BlueField
generations further, we now take a look at the pure RPC handling
capabilities. We issue RPC calls from the compute node which
does not contain any operation to be performed, i.e., a No-Op. In
Figure 3 we scale the number of threads on the BlueFields that
handle the RPC requests. We observe that the BlueField-2 has very
good scalability, i.e., almost linear, whereas the BlueField-1 only
increases the throughput with 1.9x from 2 to 8 threads. Note, since
we use both available interfaces of the BlueFields, we run with a
minimum of 2 threads.

Based on these findings it is clear that the second BlueField gener-
ation already provides a substantial performance boost over the first
generation. The suboptimal performance of the BlueField-1 renders
it hard to integrate into any performance-critical data-intensive
use cases. We argue that the performance difference mainly stems

5 5
DPUs DPUs

‘2 4 B BlueField-1 2 44 B BlueField-1
(@] i - (@] i -
s BlueField-2 2 BlueField-2
2, 25
-~ -
> >
Q. Q
521 521
=} >
o e
=R £ 1

0 0-

M 16M  256M M 16M  256M

B-tree sizes (# keys) B-tree sizes (# keys)

(a) Read-only (b) 50/50 read-write

Figure 2: Remote B-tree on BlueField-1 or BlueField-2 with
RPC.

DPUs
201 —a— BlueField-1
BlueField-2
m
§ 151
z
-
3
£
<104
>
o
F =
£
51 ‘/k//‘
04— : ; ; ; : ;
2 3 4 5 6 7 8

Server RPC threads

Figure 3: No-Op RPC BlueField-1 vs BlueField-2.

from the very low clock frequency of the BlueField-1 ARM cores,
as this is the main differentiator. In the remainder of the paper, we
thus focus on the performance of the BlueField-2.

4.1.2  BlueField-2 Offloading. We now evaluate the offloading po-
tential of the BlueField-2 DPU by utilizing the DPU together with
the host CPUs of the storage server. We use all 8 CPU cores on the
DPU and also use 8 CPU cores of the host, which we keep fixed
regardless of the partition sizes to the host or DPU. To use both
compute resources, we range-partition the B-tree between the host
memory and the DPU memory and observe the achieved overall
throughput. For partitioning, we use different setups ranging from
0-100% of the B-tree being stored on the DPU. Moreover, we create
the index requests uniformly in the whole key range such that the
relative partition sizes of the tree also match the workload gener-
ated to each compute device (i.e., the host CPU or the BlueField-2
DPU).

In Figure 4, we see the results when we gradually increase the
range partition of the B-tree on the DPU and decrease it on the host,
indicated by the x-axis. With 0% DPU offload, the host contains
the full B-tree and as such all requests are handled by the host and
the DPU is not processing any requests. Instead, with 25% offload,
3/4 of the B-tree is on the host and 1/4 is on the DPU. Overall, in
Figure 4 we initially see a steady increase in throughput as more
requests are routed to the DPU up until around 25% whereas for



25 X 1M keys
16M keys
A 256M keys

0 20+ —— Read-only
g ------ 50/50 read-write
= 151
3
Q
=
g
o 104
K=
=

5 4

0% 20 % 40 % 60 % 80 % 100 %
(host-only) DPU Offload (DPU-only)

Figure 4: Remote B-tree with increasing offload on BlueField-
2 for various B-tree sizes. RPC requests with read-only or
50/50 read-write.

the tree with 1M keys, the overall throughput increases by 47%. For
larger tree sizes, the observed throughput increase is slightly less,
with around 30% for the B-tree with 256 M keys.

However, offloading more than about 25% of the B-tree to the
DPU is detrimental to the throughput since the DPU is then over-
loaded and the performance degrades to DPU-only throughput
as reported in Figure 2 already. This degradation of throughput
is not surprising as both the CPU on the DPU is weaker and the
main-memory is slower than that of the storage host as reported in
Table 1 and Table 2. Moreover, the read-only and 50/50 read-write
workload only differs slightly for the higher throughput and smaller
B-tree cases for the same reasons as discussed before.

These results indicate that while the BlueField-2 is not powerful
enough to achieve high throughput in comparison to the host, it
yields a significant speedup by using the DPU resources in addition
to the host CPU. However, this imposes challenges for real-world
use cases, as the optimal partitioning of the B-tree is dependent on
the workload (i.e., potential access skew) and the performance of
the host server in relation to the DPU. As such, more sophisticated
adaptive solutions could come into play, which re-balances and
re-partitions the B-tree between host and DPU based on utilization
metrics, to automatically adapt to the most optimal partitioning
between the host and DPU. Such a design is, however, out of scope
of this paper.

4.1.3  Local B-tree - Throughput. To compare the achieved perfor-
mance for the remote B-tree with RPC, we locally execute lookup
and update operations on the B-tree on either the storage host or
BlueField-2, ultimately determining whether the RPC-handling or
the B-tree is the bottleneck.

In Figure 5 we execute local updates (a) or lookups (b) on different
sized trees. If we compare the lookup performance to the 100%
offloaded B-tree scenario in Figure 4, for the smallest tree the RPC
lookup (read-only) throughput is 4.7 MOps and 9.9 MOps for the
local B-tree. This indicates that half of the throughput is lost to RPC
networking overhead for the smaller tree. For the largest tree of
256M keys, the difference is much less pronounced where the RPC
lookup throughput on the DPU is 2 MOps and 2.5 MOps without
RPC overhead. The reason behind this is that for the largest tree,

50 50
—>— Host —»— Host

@ 40 BlueField-2 @ 40 BlueField-2
Q. Q
g g
= 304 = 301
= =
3 =)
Q Q
5 20 < 501
3 3
e <
£ 101 £ 101

0 T T T 0 T T T

M 4M 16M 64M 256M M 4M 16M 64M 256M
keys keys
(a) Updates (b) Lookups

Figure 5: Throughput of local B-tree update and lookup op-
erations on 8 threads.

the bottleneck is increasingly the cache misses going to the main-
memory. The CPU cache and instruction overhead introduced by
the RPC handling does therefore not affect the performance as
much relative to the smaller tree. The same trend is also observed
for the host.

Overall, these findings also confirm our previous results in Fig-
ure 4 since the benefits of the offloading stem from the lookup
requests that the DPU can provide additionally to the host CPUs.

4.2 B-tree Latency Characteristics

We now evaluate the latency characteristics of the B-tree with RPC.

4.2.1 BlueField-2 Offloading. Since the CPU cores of the DPU are
co-located with the ConnectX networking chip on the same device,
we want to evaluate whether any latency improvements can be ob-
served by using the DPU in contrast to the host. We again evaluate
the performance by offloading different partition sizes of the B-tree
to the DPU. To not overload the host or DPU we let only 1 client
thread on the compute node issue requests.

In Figure 6 we report the median latency for read-only RPC
requests. We observe that the best latency is achieved with the
complete B-tree located on the host (i.e., 0% offload). The latency
increases slightly (between 14 and 20%) with more RPC requests be-
ing routed to the DPU. This is in contrast to our initial expectations,
as having the CPU cores and memory situated on the same device
should result in lower network latency. However, two factors might
be at play here which render the achieved latency of the BlueField-
2 DPU worse than the host; (a) since the DPU CPU cores are in
fact also separated from the networking hardware (ConnectX) over
PCle, this potentially diminishes the latency benefit and (b) memory
access latencies might be worse on the DPU for B-tree lookup in
comparison to the host.

In the following, we evaluate these two aspects independently
to account for the latency increase observed in Figure 6.

4.2.2 RDMA Send Latency. To isolate the latency characteristics of
the network we execute the PerfTest!, which is a standard RDMA
benchmarking tool.

In this experiment, the compute server issues SEND requests
to either the storage host or the BlueField-2 DPU using PerfTest’s
ib_send_lat. It is important to note that the ib_send_lat test from

!https://github.com/linux-rdma/perftest


https://github.com/linux-rdma/perftest

81 M
m
=2 M
561
c
]
©
-
c 41
©
2
9] .
s Tree size
24 = 1M keys
16M keys
—&— 256M keys
0% 20 % 40 % 60 % 80 % 100 %
(host-only) DPU Offload (DPU-only)

Figure 6: Remote B-tree latency with increasing offload on
BlueField-2. RPC requests with read-only.

361 5 Host - inlining enabled
3.4 +:X=+ Host - inlining disabled
' BlueField-2 - inlining enabled
3.2 BlueField-2 - inlining disabled .
i Lttt
i:?. et B
2307 soinnns et
1)
c
3 2.8
©
—
2.6 /1
2.4 x_——x—/
224

8B 16B 32B 64B 128B 256B 512B 1KiB
Message sizes

Figure 7: RDMA Send latency measured with ib_send_lat
from the compute server to the storage server (host) or
BlueField-2, with or without inlining of data up to 236 B.

PerfTest implements a ping-pong and reports half of the round-trip
as latency. In this benchmark, the SEND performance of the storage
server’s host CPU or DPU is therefore also included. We execute the
benchmark both with and without data inlining. If the payload of an
RDMA send operation is less than the maximum possible inlinable
size, a PCIe round-trip to the NIC can be saved. The inlining size
limit for our hardware is 236 bytes and enabled by default.

Running the ib_send_lat benchmark for different message sizes
in Figure 7 shows that with inlining enabled (up to 237 bytes), the
latency is almost the same. However, without inlining (dotted lines
or above 237 bytes) we see a latency improvement for the DPU
around 0.4 ps. The experiment shows that while there can be a real
latency improvement for the DPU, for small message sizes (e.g., 32
byte as used in our RPC framework), inlining reduces the additional
PCle overhead present for the host versus the DPU.

4.2.3 Local Memory Latency. As such, we next speculate that the
reason why the observed RPC B-tree latency is not lower on the
DPU versus the storage host might be due to worse memory access
latency. We test this by measuring the latency for random memory
access over different memory block sizes. With smaller memory
sizes, the CPU will be able to cache most requests, but with larger

3501 e~ Host w/o huge-pages
+»¢+ Host w/ huge-pages
3004 BlueField-2 w/o huge-pages
BlueField-2 w/ huge-pages
250 1
m
=
< 200
o
3
150
-
100 1
50

0 . . . . .
128KiB 512KB 2MiB  8MiB  32MiB 128MiB 512 MiB
Memory block size
Figure 8: Memory read latencies for increasing memory block
sizes. Data obtained through tinymembench?.

sizes, more cache-misses will occur. We compare the latencies of
the storage host and the DPU to evaluate both their ability to cache
reads and the cost of cache-misses.

In Figure 8, we report the local memory access latency for the
host and BlueField-2. Already at around 1 MiB, the BlueField-2
memory accesses become relatively more expensive which can be
attributed to the smaller cache sizes for the DPU. As the last-level
cache of the BlueField-2 is only 6 MiB, the data spills out of the
caches and memory accesses can to a smaller degree be cached. In
comparison to the host with 48 MiB last-level cache, access latencies
are much smaller and stable. We also report the effect of huge-pages
where the increasing cost of TLB-misses already gets visible for the
BlueField at around 64 MiB. For the B-tree RPC experiments, we
do not utilize huge-pages.

Overall, the memory access latency is substantially higher on
the DPU which contributes to the fact that we do not experience
any latency benefit for the RPC B-tree use case.

4.3 Discussion

We now summarize the main findings for evaluating the BlueFields
in a remote RPC B-tree use case. In conclusion, there is both poten-
tial for integrating the DPU, but also downsides.

A goal of our evaluation of the BlueField is to test whether any
latency improvements can be observed. While there is in fact a de-
tectable latency increase for networking messages on the BlueField,
several factors render the remote B-tree access slightly slower than
the host. These factors are slow local memory, smaller caches and
smaller benefit of inlining small message sizes.

The CPU cores and the local memory on the DPU are substan-
tially slower than a typical server-grade machine and as such blindly
offloading data-intensive operations onto the DPU severely impacts
the achievable performance. We instead argue that the DPU must
be carefully integrated such that the workload offloaded to the DPU
corresponds to the processing capabilities.

Zhttps://github.com/ssvb/tinymembench


https://github.com/ssvb/tinymembench

5 USE CASE 1: REMOTE B-TREE WITH
ONE-SIDED RDMA

More and more designs are utilizing one-sided RDMA to access
remote data structures in disaggregated memory setups [1, 24, 33,
34]. The reason for this is that one-sided operations help to remove
the load on the (potentially weak) remote memory servers. Since
we already saw that the BlueField-2 struggles to achieve good RPC
performance due to the relatively slow memory and CPU cores,
one-sided access is a promising use case as it does not incur any
CPU overhead on the DPU.

In this use case, we therefore evaluate a remote B-tree accessed
only over one-sided RDMA read operations. The way a remote
B-tree lookup works for one-sided operations is that clients are first
issuing a read on the root node and locally performing a binary
search to determine the next child node. This is repeated until the
leaf level. As such, an RDMA read request is issued for each level of
the B-tree and since the reads are interdependent (i.e., the location
of one read depends on the previous) they cannot be overlapped.

We first evaluate the throughput characteristics and subsequently
look at the latency. Last, we discuss the findings holistically.

5.1 Throughput Characteristics

One-sided remote data structures often come with a lower through-
put than their RPC counterparts since a network round-trip is
necessary for each data-dependent read. However, a unique possi-
bility with one-sided accesses is that the data structure can easily
be distributed out on multiple storage nodes to spread out load and
achieve higher throughput [24, 33]. This is possible since each read
is anyway a remote access and can therefore be directed to any
storage server.

In our B-tree benchmark, we however focus on just one storage
server and compare the throughput while gradually offloading the
B-tree to the DPU. We see in Figure 9 that the throughput stays
stable with more of the B-tree being partitioned to the DPU. As
such, there is no real difference in terms of throughput performance
whether the B-tree is offloaded to the DPU or not. The DPU is
therefore a good candidate for offloading one-sided accesses since
it alleviates load on the main-memory of the host system of the
storage server.

We also evaluate the impact on different node sizes of the tree,
i.e., the size of each RDMA read, and observe that for the tested tree
sizes, 2048 B node sizes provide the best throughput at 0.8 MOps.
The reason behind this is that even though an RDMA read of 2048
B is more expensive in terms of throughput and latency than 512 B,
larger nodes result in a bigger fanout and a shallower tree requiring
fewer network round-trips. As previously mentioned, while the
absolute throughput is much lower compared to an RPC solution,
the contention on the remote NIC can be spread out to achieve

higher throughput.

5.2 Latency Characteristics

While we did not see any latency improvement for offloading RPC
B-tree lookups to the DPU due to the smaller caches and slower
CPU, these factors are not as influential for one-sided accesses.
We, therefore, expect to see a reduced latency as more lookups
are offloaded to the DPU, due to the close proximity of the DPU

0.8 1
x"x"x--x-;@.)(..)(..x.-><--)(..)(..)(..)Q-)@-X--)c'x'%')("x"x
0.7 1
2 0.6 1 _
] R R R g i g e R
£ 051
5
£0.41 A——H—A——k‘ﬂ—i—ﬁ—ﬁﬂ_‘_‘_‘_m
o
>
© 0.3
&=
=
024 X 1Mkeys —— 512 B nodes
0.14 16M keys =~ eeeee 2048 B nodes
’ A 256M keys
0.0 T T T T T T
0% 20 % 40 % 60 % 80 % 100 %
(host-only) DPU Offload (DPU-only)

Figure 9: Remote B-tree throughput with increasing offload
on BlueField-2. Read-only with one-sided RDMA.

30

251 w

m
3 R4 0.0600-0-9.q,
>‘20‘ *'*"E'A‘-A--A..A..‘.*.‘
2 e RV
[J] 35K e g 2w X Ko w Xe
£ 154 6+ 3+ X = X 1 X x'-x-'x'%-*-x--x"x--w-x--x--x-%.x
-
=
ey
T 104
=
X 1M keys —— 512 B nodes
51 16M keys ~ eeeee 2048 B nodes
A 256M keys
0% 20 % 40 % 60 % 80 % 100 %
(host-only) DPU Offload (DPU-only)

Figure 10: Remote B-tree latency with increasing offload on
BlueField-2. Read-only with one-sided RDMA.

cores to the network. In Figure 10 we execute the B-tree lookups
with different partition sizes offloaded to the DPU. A clear trend is
shown here that the DPU provides faster lookups than the host. For
the different tree sizes and node sizes, the improvement is around
11-13%.

The difference in latency observed for the evaluated tree sizes
and node sizes is due to the different latency of the RDMA read
and the depth of the tree. As an example, a node size of 512 B has a
fanout of 512B/16B = 32 (with 16 B used as key and child pointer),
so for a tree with 256 M keys, the depth will be [logs2(256M)] = 6,
whereas a node size of 2048 B only has a depth of 5 and therefore
one less RDMA read. The experiment shows that the lower latency
of a 512 B read with respect to a 2048 B read does not amortize the
cost of an extra read in the B-tree.

5.3 Discussion

In conclusion, since the relatively weak CPU cores of the BlueField-2
are not engaged with one-sided access, the DPU has better offload-
ing potential. The strongest benefit comes with lower access latency
due to the co-location of the CPU cores and the network on the
same physical board.

Another interesting benefit given by offloading the one-sided
accesses to the DPU is that read or write pressure on the local main-
memory of the host is alleviated, which might benefit concurrent



2.0 A

-
5
L

=
o
Median Latency (us)

Throughput (MOps)

N

X Host —— Throughput (left axis) [ 2
BlueField-2 - Latency (right axis)
0.0 T T T T T T T 0
2 4 6 8 10 12 14

Client Threads

Figure 11: Throughput and latency of one-sided RDMA fetch-
and-add on either the storage host or the BlueField-2 DPU.

memory-intensive applications. This is even more noticeable with
faster networks such as the BlueField-2 model with 200 Gbps.

6 USE CASE 2: REMOTE SEQUENCER

A common building block in distributed systems is global counters.
They are among others used for global timestamps, asserting mes-
sage ordering or coordinating access to shared memory [12]. There
has already been work that incorporates counters in the network
such as a programmable switch [16] or directly in the SRAM of an
RDMA-NIC [24], we, however, aim to evaluate the more traditional
setup of placing a counter in remote DRAM main-memory. We
evaluate the performance differences between the storage host and
the BlueField-2 DPU with both one-sided RDMA atomic operations
and with RPC with local atomic operations.

6.1 One-sided RDMA Atomics

Atomic operations are already provided in the collection of RDMA
primitives such that multiple clients can perform fetch-and-add
or compare-and-swap operations over the network without any
additional coordination. In general, this can facilitate one-sided
access to remote data structures without any locking. For this use
case, we evaluate a remote counter (i.e., sequencer) accessed with
one-sided RDMA fetch-and-add operations.

In Figure 11 we report the throughput and latency with an in-
creasing number of client threads on the compute node accessing
the same counter. In this use case we see a substantial benefit of the
DPU in terms of achieved throughput. Placing the atomic counter
on the DPU achieves an almost 50% throughput speedup. This is
also reflected in the number of clients needed to saturate the remote
server where the throughput of the DPU is saturated by around
8 clients whereas the storage host only can scale up to around 6
clients.

The latency is almost identical with a slight benefit on the DPU.
Beyond the saturation point, the latencies increase linearly with
more clients added as contention is created and requests are in-
creasingly queued.

6.2 RPC with Local Atomics

The alternative to realizing a global sequencer with one-sided primi-
tives is to use a two-sided approach with RPC requests which access

30.0 A

25.0 A

20.0 A

15.0

Throughput (MOps)

10.0 A

5.0 —— Host
BlueField-2

0.0 T T T T T T T
2 4 6 8 10 12 14

Client Threads

Figure 12: Throughput of RPC sequencer on either the stor-
age host or the BlueField-2 DPU.

the counter with local atomic operations. Such a design involves the
remote side and therefore the CPU and memory resources have a
bigger impact on the performance as already established previously.
For completeness and point-of-comparison we include the achieved
performance with a global sequencer realized on either the host
CPU or the DPU.

In Figure 12 we report the achieved throughput with an RPC
implementation. Similar behavior as the B-tree RPC experiment
can also be observed here, namely the relatively powerful CPU of
the host results in substantially higher throughput than the DPU.
The performance difference is however only up to 2X in this use
case versus roughly 3x in the B-tree. The reason for this is that the
counter is less memory-intensive and despite the smaller caches,
the DPU can cache the atomic counter.

6.3 Discussion

Based on our experiments, the sequencer shows itself as an inter-
esting use case to offload to the DPU, especially when utilizing
one-sided atomic accesses. The closer proximity of the memory
of the DPU to the network in comparison to the host results in a
50% throughput increase. While one-sided accesses achieve worse
throughput than an RPC implementation, they are still often ap-
plied due to the fact that no CPU load is introduced on the storage
server and that a throughput of 2 MOps is sufficient for many use
cases [22].

7 CONCLUSION AND FUTURE WORK

We now conclude our findings by summarizing in which scenarios
the BlueField DPUs show an acceleration potential and in which
scenarios they do not. Moreover, we discuss some avenues for future
work.

Summary. The BlueField-2 DPU is naturally no replacement for a
general server-grade CPU and memory. It is instead marketed as an
accelerator for networking-related tasks, due to its set of network-
oriented hardware accelerators. The majority of these accelerators
are however not applicable to our evaluated use cases as they are
mostly concerned with security tasks or virtualization.

In conclusion, we evaluated the BlueField DPUs with respect to
typical DBMS tasks such as remote B-trees or a global sequencer.



The main findings are that an acceleration potential exists for one-
sided accesses both in terms of latency and throughput whereas
two-sided accesses easily overload the DPU. However, using the
DPU in combination with the host CPU of the storage server can
yield promising performance benefits provided that the workload
is carefully distributed with regard to the relative performance
difference.

Future Work. We see that BlueField DPUs are under active de-
velopment with a new generation BlueField-3 around the corner
which shows even more and faster CPU cores and memory. We
speculate that the BlueField-3 is therefore a promising platform for
also accelerating two-sided data-intensive tasks.

Moreover, we did not cover tasks where BlueField cards pro-
vide ASIC-based accelerators such as engines for compression/de-
compression, encryption/decryption, regex pattern matching and
NVMe. While we did not cover such engines in our evaluation, they
are also interesting for DBMS workloads and are thus worth to be
studied in future work.

Finally, while B-trees and global sequencers are important and
interesting use cases for DBMS, there are many other use cases
that are worth studying in the future. For example, if the DPUs
become more powerful, we can think of implementing a full storage
engine on the DPU including a concurrency scheme implementation
that allows clients to access and modify data concurrently while
coordinating these accesses.

ACKNOWLEDGMENTS

We thank the reviewers for their feedback. This work was partially
funded by the German Research Foundation (DFG) under the grants
BI2011/1 & BI2011/2 (DFG priority program 2037) and the DFG
Collaborative Research Center 1053 (MAKI). Finally, we want to
thank hessian.AI at TU Darmstadt as well as DFKI Darmstadt for
the support.

REFERENCES

[1] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal.
2019. Designing Far Memory Data Structures: Think Outside the Box. In Proceed-
ings of the Workshop on Hot Topics in Operating Systems, HotOS 2019, Bertinoro,
Italy, May 13-15, 2019. ACM, 120-126. https://doi.org/10.1145/3317550.3321433
Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow. 9,
7 (2016), 528-539. https://doi.org/10.14778/2904483.2904485
[3] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the
memory wall in MonetDB. Commun. ACM 51, 12 (2008), 77-85. https://doi.org/
10.1145/1409360.1409380
Scott Ciccone and John F. Kim. 2022. NVIDIA Introduces BlueField
DPU as a Platform for Zero Trust Security with DOCA 1.2.  NVIDIA.
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-
platform-for-zero-trust-security-with-doca-1-2/
Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, Fatma Ozcan, Georgia Koutrika, and Sam Madden
(Eds.). ACM, 215-226. https://doi.org/10.1145/2882903.2903741
Franz Faerber, Alfons Kemper, Per-Ake Larson, Justin J. Levandoski, Thomas
Neumann, and Andrew Pavlo. 2017. Main Memory Database Systems. Found.
Trends Databases 8, 1-2 (2017), 1-130. https://doi.org/10.1561/1900000058
[7] Franz Farber, Sang Kyun Cha, Jiirgen Primsch, Christof Bornhévd, Stefan Sigg,
and Wolfgang Lehner. 2011. SAP HANA database: data management for modern
business applications. SIGMOD Rec. 40, 4 (2011), 45-51. https://doi.org/10.1145/
2094114.2094126

&2,

[4

flaa

(5

=

=
&

[8] Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neu-
mann, and Alfons Kemper. 2020. Low-Latency Communication for Fast DBMS
Using RDMA and Shared Memory. In 36th IEEE International Conference on
Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020. IEEE, 1477-1488.
https://doi.org/10.1109/ICDE48307.2020.00131

[9] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,

Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt

Humpbhrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye,

Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Mad-

han Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak

Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg.

2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In 15th

USENIX Symposium on Networked Systems Design and Implementation, NSDI

2018, Renton, WA, USA, April 9-11, 2018, Sujata Banerjee and Srinivasan Seshan

(Eds.). USENIX Association, 51-66. https://www.usenix.org/conference/nsdi18/

presentation/firestone

Matthias Jasny, Lasse Thostrup, Tobias Ziegler, and Carsten Binnig. 2022. P4DB

- The Case for In-Network OLTP. In SIGMOD °22: International Conference on

Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives,

Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1375-1389. https://doi.org/10.

1145/3514221.3517825

[11] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA

efficiently for key-value services. In ACM SIGCOMM 2014 Conference, SIG-

COMM 14, Chicago, IL, USA, August 17-22, 2014, Fabian E. Bustamante, Y. Char-

lie Hu, Arvind Krishnamurthy, and Sylvia Ratnasamy (Eds.). ACM, 295-306.

https://doi.org/10.1145/2619239.2626299

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guide-

lines for High Performance RDMA Systems. In 2016 USENIX Annual Technical

Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016, Ajay Gu-

lati and Hakim Weatherspoon (Eds.). USENIX Association, 437-450. https:

//[www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

[13] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast,

Scalable and Simple Distributed Transactions with Two-Sided (RDMA) Datagram
RPCs. In Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (Savannah, GA, USA) (OSDI’'16). USENIX Association, USA,
185-201.

[14] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock

Coupling: A Scalable and Efficient General-Purpose Synchronization Method.

IEEE Data Eng. Bull. 42,1 (2019), 73-84. http://sites.computer.org/debull/A19mar/

p73.pdf

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew

Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-direct: high-performance

in-memory key-value store with programmable NIC. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP). 137-152.

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.

Ports. 2016. Just Say NO to Paxos Overhead: Replacing Consensus with Net-

work Ordering. In 12th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly

Keeton and Timothy Roscoe (Eds.). USENIX Association, 467-483.  https:

//www.usenix.org/conference/osdi16/technical-sessions/presentation/li

Xiaoyi Lu, Dipti Shankar, Shashank Gugnani, and Dhabaleswar K. Panda. 2016.

High-performance design of apache spark with RDMA and its benefits on various

workloads. In 2016 IEEE International Conference on Big Data, BigData 2016,

Washington DC, USA, December 5-8, 2016, James Joshi, George Karypis, Ling

Liu, Xiaohua Hu, Ronay Ak, Yinglong Xia, Weijia Xu, Aki-Hiro Sato, Sudarsan

Rachuri, Lyle H. Ungar, Philip S. Yu, Rama Govindaraju, and Toyotaro Suzumura

(Eds.). IEEE Computer Society, 253-262. https://doi.org/10.1109/BigData.2016.

7840611

Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA

Reads to Build a Fast, CPU-Efficient Key-Value Store.. In USENIX Annual Technical

Conference. 103-114.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio

Lopez-Buedo, and Andrew W. Moore. 2018. Understanding PCle performance

for end host networking. In Proceedings of the 2018 Conference of the ACM Special

Interest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary,

August 20-25, 2018, Sergey Gorinsky and Janos Tapolcai (Eds.). ACM, 327-341.

https://doi.org/10.1145/3230543.3230560

NVIDIA. 2022. BlueField DPU OS - Functional Diagram. NVIDIA. https://docs.

nvidia.com/networking/display/BlueFieldDPUOSLatest/Functional+Diagram

NVIDIA. 2022. NVIDIA BLUEFIELD DATA PROCESSING UNITS. NVIDIA. https:

//www.nvidia.com/en-us/networking/products/data-processing-unit/

Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten

Binnig. 2021. DFL: The Data Flow Interface for High-Speed Networks. In SIGMOD

°21: International Conference on Management of Data, Virtual Event, China, June

20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).

ACM, 1825-1837. https://doi.org/10.1145/3448016.3452816

[10

[12

=
i)

[16

(17

[18

[19

[20

)
=

[22


https://doi.org/10.1145/3317550.3321433
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/1409360.1409380
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-platform-for-zero-trust-security-with-doca-1-2/
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-platform-for-zero-trust-security-with-doca-1-2/
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1561/1900000058
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1109/ICDE48307.2020.00131
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1145/3514221.3517825
https://doi.org/10.1145/3514221.3517825
https://doi.org/10.1145/2619239.2626299
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
http://sites.computer.org/debull/A19mar/p73.pdf
http://sites.computer.org/debull/A19mar/p73.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1145/3230543.3230560
https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/Functional+Diagram
https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/Functional+Diagram
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://doi.org/10.1145/3448016.3452816

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-Optimized
Distributed B+Tree Index on Disaggregated Memory. In SIGMOD °22: Interna-
tional Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1033-1048.
https://doi.org/10.1145/3514221.3517824

Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-Optimized
Distributed B+Tree Index on Disaggregated Memory. In Proceedings of the 2022
International Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD °22). Association for Computing Machinery, New York, NY, USA, 1033-1048.
https://doi.org/10.1145/3514221.3517824

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory transaction processing using RDMA and HTM. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015. 87-104.

Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions Can Scale. Proc. VLDB Endow. 10, 6 (feb 2017),
685-696. https://doi.org/10.14778/3055330.3055335

Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2020. Chiller:
Contention-Centric Transaction Execution and Data Partitioning for Modern
Networks. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for
Computing Machinery, New York, NY, USA, 511-526. https://doi.org/10.1145/
3318464.3389724

Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast One-sided
RDMA-based Distributed Transactions for Disaggregated Persistent Memory.
In 20th USENIX Conference on File and Storage Technologies (FAST 22). USENIX
Association, Santa Clara, CA, 51-68. https://www.usenix.org/conference/fast22/
presentation/zhang-ming

Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian
Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. 2022. Optimizing Data-
intensive Systems in Disaggregated Data Centers with TELEPORT. In SIGMOD

[30

(32

[33

’22: International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM,
1345-1359. https://doi.org/10.1145/3514221.3517856

Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav.
2021. FoundationDB: A Distributed Unbundled Transactional Key Value Store.
In SIGMOD °21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava (Eds.). ACM, 2653-2666. https://doi.org/10.1145/3448016.3457559
Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated Storage with
In-Network Conflict Detection. Proc. VLDB Endow. 13, 3 (2019), 376-389. https:
//doi.org/10.14778/3368289.3368301

Tobias Ziegler, Viktor Leis, and Carsten Binnig. 2020. RDMA Communciation
Patterns. Datenbank-Spektrum 20, 3 (2020), 199-210.

Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing Distributed Tree-based Index Structures for Fast
RDMA-capable Networks. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska (Eds.). ACM, 741-758. https://doi.org/10.
1145/3299869.3300081

Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. 2021. One-
sided RDMA-Conscious Extendible Hashing for Disaggregated Memory. In 2021
USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021, Irina
Calciu and Geoff Kuenning (Eds.). USENIX Association, 15-29. https://www.
usenix.org/conference/atc21/presentation/zuo


https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.1145/3318464.3389724
https://doi.org/10.1145/3318464.3389724
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://doi.org/10.1145/3514221.3517856
https://doi.org/10.1145/3448016.3457559
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081
https://www.usenix.org/conference/atc21/presentation/zuo
https://www.usenix.org/conference/atc21/presentation/zuo

	Abstract
	1 Introduction
	2 Background
	2.1 Remote Direct Memory Access (RDMA)
	2.2 Data Processing Units

	3 Use Cases and Experimental Setup
	4 Use case 1: Remote B-Tree with RPC
	4.1 Throughput Characteristics
	4.2 B-tree Latency Characteristics
	4.3 Discussion

	5 Use case 1: Remote B-Tree with One-sided RDMA
	5.1 Throughput Characteristics
	5.2 Latency Characteristics
	5.3 Discussion

	6 Use case 2: Remote Sequencer
	6.1 One-sided RDMA Atomics
	6.2 RPC with Local Atomics
	6.3 Discussion

	7 Conclusion and Future Work
	Acknowledgments
	References

