
Performance-Efficient E2E AI
Pipelines
Meena Arunachalam, Principal Engineer, Artificial Intelligence and Analytics Group
Intel Corporation

13th International Workshop on Accelerating Analytics and Data Management Systems Using Modern Processor and Storage Architectures

In conjunction with VLDB 2022ADMS Workshop 2022

https://vldb.org/2022

2

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

3

Agenda

▪ Accelerated growth of AI demands on compute/memory/system

▪ AI HW and SW acceleration

▪ Multi-phased End-to-End AI optimization strategy

• Data+AI SW, frameworks, graph compilers and low-level libraries

• Low precision quantization

• Learning efficiencies

• System level optimizations

• Hyperparameter optimizations

▪ Performance-efficient E2E AI pipelines

▪ Call to action

4

Data + Model +
Deploy

5

AI Loves TFLOPS?

A. Gholami, et al., AI and Memory Wall. RiseLab Medium Blog Post, 2021

But … how do we feed all that compute?

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

6

AI and the Memory wall

A. Gholami, et al., AI and Memory Wall. RiseLab Medium Blog Post, 2021

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

7

AI Hardware Acceleration

GPU ACCELERATORSCPU

GENERAL PURPOSE PURPOSE BUILT

8

10 - 100x

Does Software Acceleration Matter?

Up to

Hardware

Acceleration

with SOFTWARE

Acceleration

Photo Source: NASA

9

End-to-End AI Software Suite

10

- Transfer learning
- Fine tuning
- Few shot learning
- Active learning
- Filtration and others

- Frameworks and ML/DL packages:
PyTorch, TensorFlow, XGBoost,
Apache Spark, Scikit-learn, Modin
and others.

- CPU Turbo mode
- Hyperthreading
- CPU power scaling governor
- Sub-NUMA clustering

- Transparent Huge Pages
- Hardware prefetchers, memory interleaving

- OMP num threads, KMP affinity etc.
- HPO: Batch size, learning rate, max depth,
L1/L2 normalization, etc. using
AutoML based tools [SigOpt]

- Quantization (BF16, INT8),
- Pruning
- Knowledge distillation

- Core scaling
- Instance scaling
- Node scaling
- Improve load balancing, reduce serial code

Performant &
Efficient AI

Data + AI SW
Acceleration

System Level
Tuning

Parameter
Optimizations

Workload
Scaling

Model
Optimizations

End-to-End AI Optimization strategies

Learning
Optimizations

11

Deep Learning powered by oneDNN

Optimizations: vectorization, data reuse, parallel ization

Optimized convolution in oneDNN

A simple program is good, but may be slow

12

Graph Optimization Example

B as e l i n e
S u m

R e L U

C o n v 1 x 1
B a t c h N o r m

R e L U

C o n v 3 x 3
B a t c h N o r m

R e L U

C o n v 1 x 1
R e L U

S u m
R e L U

C o n v 1 x 1
B a t c h N o r m

INT8 Optimized Model

B N F o l d i n g C o n v + R e L U C o n v + S u m
S u m

R e L U

C o n v 1 x 1 ’
R e L U

C o n v 3 x 3 ’
R e L U

C o n v 1 x 1 ’

S u m
R e L U

C o n v 1 x 1 ’

Sum’

Conv1x1’’

Conv3x3’’

Conv1x1’’

Sum’

Conv1x1’’

Sum’

Conv1x1’’

Conv3x3’’

Conv1x1’’’

Conv1x1’’

A0

B0

A1

B1

A2

B2

A3

B3

…

…

A63

B63

C0

A0 *B0 + A1 *B1+A2

*B2+A2 *B2+C0

…

…

C15

A60 *B60 + A61 *B61+A62

*B62+A63 *B63+C015

13

Machine learning powered by oneDAL

The best performance on Intel Architectures
with oneMKL (Intel® MKL) vs. lower
performance on BLAS/LAPACK libs

1

oneDAL targets to many-core systems to
achieve the best scalability on Intel® Xeon,
other libs mostly target to client versions
with small amount of cores

2

oneDAL uses the latest available vector-instructions on
each architecture, enables them by compiler options,
intrinsic. Usually, other ML libs build applications without
vector-instructions support or sse4.2 only.

3

oneDAL uses the most efficient memory optimization
practices: minimally access memory, cache access
optimizations, SW memory prefetching. Usually Other
ML libs don’t make low-level optimizations.

4

oneDAL enables new instruction sets and
other HW features even before official HW
launch. Usually, other ML libs do this with
long delay.

5

oneDAL provides distributed algorithms
which scale on many nodes6

14

Low precision Inference: Model quantization

OOB Random Models (w/ VNNI
example)

Model quantization to low precision yields significant performance speedups on a variety of models.
Pruning, distillation and mixed precision strategies also further model efficiencies.

15

Hyper parameter and Instance tuning with SigOpt (DIEN)

▪ https://sigopt.com/

▪ Sigopt features:
▪ Easy to track runs, visualize training, and scale

hyperparameter optimization

▪ Advanced optimization Engine that delivers better results,
faster and cheaper

▪ Easy to use and parallelize for any type of model built
with any library on any infrastructure

https://sigopt.com/

16

Instance 1 Instance 2 Instance 3 Instance 4

Instance 5

Instance 6 Instance 7

Instance 8

Instance 9

Instance 10

System level Tuning

Intel Xeon Platinum 8380 Processor with 40 cores per socket

Hyperthreading allows 2 threads

to run on a core

Performance scaling drivers

control core frequencies and

power configurations

Instance scaling: This

example is 10 Xeon

instances per socket

Sub-NUMA Clustering divides the

cores, cache, and memory of the

processor into multiple NUMA

domains and helps workloads that

are NUMA aware & optimized

Channel interleaving divides memory

blocks and spread contiguous portions of

data across interleaved channels, thereby

increasing potential read bandwidth

Memory Interleaving allows physical

ranks of memory to be accessed while

another is being refreshed

Examples of BIOS/system level
tuning:

• Hyperthreading

• CPU Turbo Boost Technology

• CPU power scaling governors

• NUMA optimizations

• Sub-NUMA Clustering

• Transparent Huge Pages

• Hardware prefetchers

• Channel interleaving

• Memory interleaving

• Hardware P-state

• Hardware C-state

17

PLAsTiCC Astronomical Classification
PLAsTiCC is an open data challenge to classify objects in the sky that vary in brightness using simulated astronomical time-
series data. The challenge is to determine a probability that each object belongs to one of 14 classes of astronomical filters.

CSV Parsing

FEATURE ENGINEERING

Arithmetic
Op

Groupby
Agg

Drop
Columns

csv

MACHINE LEARNING

Train
XGBoost

Cross
Validation

Prediction

csv

csv

csv

Train
Data

Test
Data

Test
Meta
Data

Train
Meta
Data

CSV Parsing

CSV Parsing

CSV Parsing

Reset
Index

Drop
Columns

Arithmetic
Op

Groupby
Agg

Drop
Columns

Reset
Index

Drop
Columns

Merge

Merge
Train
Test
Split

18

Ingestion Feature Engg

TrainingTrain-Test-Split Inference

Machine Learning

Transparently distributes the data and
computation across available cores, unlike
Pandas which only uses one core at a time.

Single line import
change to run Modin
instead of pandas

Modin can be installed from PyPI:
pip install modin

Scikit-learn

Foundational library to speed up your Scikit-learn application, that is
highly optimized with low-level HW feature enabling to cover data
analytics and machine learning.

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

from sklearnex import patch_sklearn

patch_sklearn()

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

Scikit-learn with Intel CPU opts

Available through PyPi
pip install scikit-learn-intelex

Scikit-learn mainline

Modin

Intel® optimizations are
now available as part
of mainline XGBoost
repository.

• Read data

• Create dataframe

• Drop columns

• Groupby agg

• Arithmetic ops

• Create feature set/
test set

• Train test split

• Load numpy array to dmatrix objects
• Model prediction

• Calculate accuracy

PLAsTiCC Astronomical Classification

End-to-end ML optimizations

19

X

10X

20X

30X

40X

50X

60X

70X

80X

Data Ingestion Feature Engg Machine Learning Total Time

Sp
ee

d
 u

p

PLAsTiCC - Performance speedup with optimized software & hyperparameter optimizations

Stock software Optimized software Optimized software and hyperparameters

Performance with optimized software & hyperparameters

PLAsTiCC Astronomical
Classification

Optimized - Phase-wise %time
breakdown

Data Ingestion Feature Engg

Machine Learning

Higher is
better

Hardware: 2 x Intel Xeon Platinum 8280L (28 cores), OS: Ubuntu 20.04.1 LTS Mitigated, 384 GB RAM (384 GB RAM: 12 x 32 GB 2933 MHz), kernel:
5.4.0–65-generic, microcode: 0x4003003, CPU governor: performance.
Software: scikit-learn 0.24.1, pandas 1.2.2, XGBoost 1.3.3, Python 3.9.7, scikit-learn-intelex 2021.2, modin 0.8.3, omniscidbe v5.4.1.

PLAsTiCC Astronomical Classification

69x

21x

18x

1.5x

• 14GB dataset with 1.4 millions rows in training and 189 million
rows in test dataset – takes advantage of Modin’s extremely
light-weight, robust Dataframe & readcsv operation which
scales with cores, unlike pandas

• Operations in feature engineering are memory bound and
benefit from the faster memory access speeds

• Microarchitecture factors like higher core frequency, cache size,
cache BW help improve XGBoost performance

PLAsTiCC Astronomical
Classification

Unoptimized - Phase-wise %time
breakdown

Data Ingestion Feature Engg

Machine Learning

46%

44%

10%

51%
45%

4%

20

E2E Recommendation System (E2E DIEN)
E2E DIEN: A representative E2E inference workload of recommendations that provides the capability of estimating use
clicks at scale.

Json
Parsing

FEATURE ENGINEERING

Join
Label

Encoding
Get Click
History

Negative
Sampling

Split
data

json
csv

pickle

DEEP LEARNING

… pretrained

model

Prepare
data

Model
Restore

Inference

Prepare
data

Model
Restore

Inference

D
O

C
K

E
R

Data
Persistence

Intel Neural Compressor
INT8 Quantization

21

Deeper Analyses and insights: Optimizations

Optimized frameworks take advantage
AVX512 and AMX instructions.

Conversion to Ops to Intel oneDNN (MKL) Ops
optimized for Intel HW

Operator Fusions enable even more speedup
& efficient use during runtime execution.

• GRU(MklFusedMatmul)

• Attention layer(MklFusedMatmul)

E2E DIEN

22

E2E Recommendation System (E2E DIEN)

0

5

10

15

20

25

Stock Software Optimized Software Optimized Software w/
Multi-instances

Optimized Software w/
Multi-instances &
Hyperparameters

Optimizations

Sp
ee

d
 U

p

E2E Recommendation System (DIEN)
Path to efficient AI

6x
Modin/Spark, Intel
Extension for
Tensorflow

3.8x
56 instances, 1 core
per instance

Configuration: Hardware: Single node, 2 x Intel Xeon Gold 6348 (28 cores), OS: RHEL 8.4, 384 GB RAM (512 GB RAM: 12 x 32 GB

3200 MHz), kernel: 4.18.0-305.el8.x86_64, microcode: 0xd000280, CPU governor: performance.

Software: Modin 0.12.0, Python 3.8.10, intel-tensorflow-avx512 2.7.0.

E2E Recommendation system got significant improvement of ~23x over baseline by applying multiple
optimization strategies together.

In
feren

ce

Model Loading

Fin
e-Tu

n
in

g

Model Loading D
eep

 Learn
in

g
Fin

e-Tu
n

in
g

P
re

p
ro

ce
ss

in
g

Setup Sentiment
Analysis Task Classifier Load

Training
Dataset

Tokenization + Feature
Extraction

Initialize Transformer
for fine-tuning

Fine-tuning (Batched)
Loop

IMDB

or

SST-2

Dataset

BERT

Base

or

Large

Dataset

Fine-Tuned

DLSA

Model

Output

Accuracy

Model Model

D
eep

 Learn
in

g
In

feren
ce

P
re

p
ro

ce
ss

in
g

Perform Sentiment
Analysis Task
Classification

Load
Inference
Dataset

Load
Fine-Tuned

Model

Tokenization + Feature
Extraction

Initialize Transformer
for Inference

Inference (Batched)
Loop

Post processing

Results
evaluation

Output

Positive / Negative

Sentiment &

Accuracy

Load
Pretrained

Model

E2E NLP Document-level Sentiment Analysis (DLSA)
A representative E2E Fine-Tuning & Inference NLP workload with Sentiment Analysis Task on Huggingface Transformer API

StorageStorage

24

Optimized frameworks take advantage AVX512 and
AMX instructions.

Conversion to Ops to Intel oneDNN (MKL) Ops
optimized for Intel HW

Operator Fusions enable even more speedup &
efficient use during runtime execution.

• Gelu (Bunch of smaller ops fused to Gelu Op tf.nn.gelu)

• Fusion of MatMul + BiasAdd + Gelu(MklFusedMatmul)

• Fusion of BatchMatMul + Mul + Add(MklBatchMatmul)

• LayerNormalization (Bunch of smaller ops for keras layernorm
api)(MklLayernorm)

E2E NLP Sentiment Analysis (DLSA)

Fine-Tuning Explained with Context to Hugging face DLSA
• Process of using a pretrained model, trained on a different source dataset, to train (modify training parameters) of a new target

model (fine-tune it) with a different task (output layer) using a different target dataset .

• In DLSA we use BERT model for Masked-Language-Modeling task pretrained on large corpus of English data, to fine tune a new
BERT model for sentiment analysis task on SST-2 or IMDB dataset.

https://d2l.ai/chapter_computer-vision/fine-tuning.html
https://www.machinecurve.com/index.php/2021/01/02/intuitive-introduction-to-openai-gpt/

E2E NLP Sentiment Analysis Inference (DLSA)

O p t i m i z e d

A I / A n a l y t i c s

P a c k a g e s

Parallelize

• single instance
to multi-
instance

• single node to
multi-node

Vectorize

• High vector
efficiency
through
oneDNN
optimization
library.

Graph Opt

• OP fusion

• Batch
normalization

• Weight
Caching

Precision

• Auto Mix
Precision (BF16)

• 8-bit
Quantization
using INC.

Powered by Intel optimized AI/Analytics Packages

Optimized to fully utilize modern parallel HW

Xeon
CPU

ARC
GPU

0

0.5

1

1.5

2

2.5

3

3.5

4

Stock Software Optimized Parameters Opt Software &
Parameters + INT8

Optimized Software ,
Parameters &

Hyperparameters + INT8+
Multi-instances

SP
EE

D
 U

P

E2E Document Level Sentiment Analysis (DLSA)
Path to efficient AI

1.27x

2.17x

1.22x

E2E DLSA got significant total improvement of ~3.36x over baseline by applying multiple optimization strategies together.

Configuration: Hardware: Single node, 2 x Intel Xeon Gold 6348 (28 cores), OS: RHEL 8.4, 384 GB RAM (512 GB RAM: 12 x 32 GB

3200 MHz), kernel: 4.18.0-305.el8.x86_64, microcode: 0xd000280, CPU governor: performance.
Software: Python 3.8.10, PyTorch 1.10, intel-extension-for-pytorch 1.10, transformers 4.15.0

27

Call To Action

▪ Efficient AI happens when AI frameworks and libraries, system tuning, model &
hyperparameter optimization and run-time parameter tuning all work together cohesively

▪ A clear path towards end-to-end AI performance roofline is achievable

▪ Every phase of an end-to-end AI pipeline needs to be efficient and optimized to realize an
overall effective AI solution

▪ Performance acceleration with “optimization toolbox” strategies on CPUs brings
significant boost in efficiency for end-to-end AI pipelines

