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Agenda

▪ Accelerated growth of AI demands on compute/memory/system

▪ AI HW and SW acceleration

▪ Multi-phased End-to-End AI optimization strategy

• Data+AI SW, frameworks, graph compilers and low-level libraries

• Low precision quantization 

• Learning efficiencies 

• System level optimizations

• Hyperparameter optimizations

▪ Performance-efficient E2E AI pipelines

▪ Call to action
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Data    + Model    +
Deploy



5

AI Loves TFLOPS?

A. Gholami, et al., AI and Memory Wall. RiseLab Medium Blog Post, 2021

But … how do we feed all that compute?

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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AI and the Memory wall

A. Gholami, et al., AI and Memory Wall. RiseLab Medium Blog Post, 2021

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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AI Hardware Acceleration

GPU ACCELERATORSCPU

GENERAL PURPOSE PURPOSE BUILT
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10 - 100x

Does Software Acceleration Matter?

Up to

Hardware

Acceleration

with SOFTWARE

Acceleration

Photo Source: NASA
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End-to-End AI Software Suite
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- Transfer learning
- Fine tuning
- Few shot learning
- Active learning
- Filtration and others

- Frameworks and ML/DL packages:  
PyTorch, TensorFlow, XGBoost, 
Apache Spark,  Scikit-learn, Modin
and others.

- CPU Turbo mode
- Hyperthreading
- CPU power scaling governor
- Sub-NUMA clustering

- Transparent Huge Pages
- Hardware prefetchers, memory interleaving

- OMP num threads, KMP affinity etc.
- HPO: Batch size,  learning rate, max depth, 
L1/L2 normalization, etc. using 
AutoML based tools [SigOpt]

- Quantization (BF16, INT8), 
- Pruning
- Knowledge distillation  

- Core scaling
- Instance scaling
- Node scaling
- Improve load balancing, reduce serial code

Performant & 
Efficient AI

Data + AI SW 
Acceleration

System Level 
Tuning

Parameter 
Optimizations

Workload 
Scaling

Model 
Optimizations

End-to-End AI Optimization strategies 

Learning 
Optimizations
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Deep Learning powered by oneDNN 

Optimizations: vectorization, data reuse, parallel ization

Optimized convolution in oneDNN

A simple program is good, but may be slow
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Graph Optimization Example
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Machine learning powered by oneDAL

The best performance on Intel Architectures 
with oneMKL (Intel® MKL) vs. lower 
performance on BLAS/LAPACK libs

1

oneDAL targets to many-core systems to 
achieve the best scalability on Intel® Xeon, 
other libs mostly target to client versions 
with small amount of cores

2

oneDAL uses the latest available vector-instructions on 
each architecture, enables them by compiler options, 
intrinsic. Usually, other ML libs build applications without 
vector-instructions support or sse4.2 only.

3

oneDAL uses the most efficient memory optimization 
practices: minimally access memory, cache access 
optimizations, SW memory prefetching. Usually Other 
ML libs don’t make low-level optimizations.

4

oneDAL enables new instruction sets and 
other HW features even before official HW 
launch. Usually, other ML libs do this with 
long delay.

5

oneDAL provides distributed algorithms 
which scale on many nodes6
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Low precision Inference: Model quantization

OOB Random Models (w/ VNNI 
example)

Model quantization to low precision yields significant performance speedups on a variety of models.
Pruning, distillation and mixed precision strategies also further model efficiencies.
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Hyper parameter and Instance tuning with SigOpt (DIEN)

▪ https://sigopt.com/

▪ Sigopt features:
▪ Easy to track runs, visualize training, and scale 

hyperparameter optimization

▪ Advanced optimization Engine that delivers better results, 
faster and cheaper

▪ Easy to use and parallelize for any type of model built 
with any library on any infrastructure

https://sigopt.com/
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Instance 1 Instance 2 Instance 3 Instance 4

Instance 5

Instance 6 Instance 7

Instance 8

Instance 9

Instance 10

System level Tuning

Intel Xeon Platinum 8380 Processor with 40 cores per socket

Hyperthreading allows 2 threads 

to run on a core 

Performance scaling drivers 

control core frequencies and 

power configurations

Instance scaling: This 

example is 10 Xeon 

instances per socket

Sub-NUMA Clustering divides the 

cores, cache, and memory of the 

processor into multiple NUMA 

domains and helps workloads that 

are NUMA aware & optimized

Channel interleaving divides memory 

blocks and spread contiguous portions of 

data across interleaved channels, thereby 

increasing potential read bandwidth

Memory Interleaving allows physical 

ranks of memory to be accessed while 

another is being refreshed

Examples of BIOS/system level 
tuning:

• Hyperthreading

• CPU Turbo Boost Technology

• CPU power scaling governors

• NUMA optimizations

• Sub-NUMA Clustering

• Transparent Huge Pages

• Hardware prefetchers

• Channel interleaving

• Memory interleaving

• Hardware P-state

• Hardware C-state
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PLAsTiCC Astronomical Classification
PLAsTiCC is an open data challenge to classify objects in the sky that vary in brightness using simulated astronomical time-
series data. The challenge is to determine a probability that each object belongs to one of 14 classes of astronomical filters.

CSV Parsing

FEATURE ENGINEERING

Arithmetic 
Op

Groupby
Agg

Drop 
Columns

csv

MACHINE LEARNING

Train
XGBoost

Cross
Validation

Prediction

csv

csv

csv

Train 
Data

Test 
Data

Test 
Meta 
Data

Train 
Meta 
Data

CSV Parsing

CSV Parsing

CSV Parsing

Reset
Index

Drop 
Columns

Arithmetic 
Op

Groupby
Agg

Drop 
Columns

Reset
Index

Drop 
Columns

Merge

Merge
Train
Test
Split
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Ingestion Feature Engg

TrainingTrain-Test-Split Inference

Machine Learning

Transparently distributes the data and 
computation across available cores, unlike 
Pandas which only uses one core at a time.

Single line import 
change to run Modin 
instead of pandas

Modin can be installed from PyPI:
pip install modin

Scikit-learn

Foundational library to speed up your Scikit-learn application, that is 
highly optimized with low-level HW feature enabling to cover data 
analytics and machine learning.

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

from sklearnex import patch_sklearn

patch_sklearn()

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

Scikit-learn with Intel CPU opts

Available through PyPi
pip install scikit-learn-intelex

Scikit-learn mainline

Modin

Intel® optimizations are 
now available as part 
of mainline XGBoost 
repository.

• Read data

• Create dataframe

• Drop columns

• Groupby agg

• Arithmetic ops

• Create feature set/
test set

• Train test split

• Load numpy array to dmatrix objects
• Model prediction

• Calculate accuracy

PLAsTiCC Astronomical Classification

End-to-end ML optimizations
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PLAsTiCC - Performance speedup with optimized software & hyperparameter optimizations

Stock software Optimized software Optimized software and hyperparameters

Performance with optimized software & hyperparameters

PLAsTiCC Astronomical 
Classification

Optimized - Phase-wise %time 
breakdown

Data Ingestion Feature Engg

Machine Learning

Higher is 
better

Hardware: 2 x Intel Xeon Platinum 8280L (28 cores), OS: Ubuntu 20.04.1 LTS Mitigated, 384 GB RAM (384 GB RAM: 12 x 32 GB 2933 MHz), kernel: 
5.4.0–65-generic, microcode: 0x4003003, CPU governor: performance.
Software: scikit-learn 0.24.1, pandas 1.2.2, XGBoost 1.3.3, Python 3.9.7, scikit-learn-intelex 2021.2, modin 0.8.3, omniscidbe v5.4.1.

PLAsTiCC Astronomical Classification

69x

21x

18x

1.5x

• 14GB dataset with 1.4 millions rows in training and 189 million 
rows in test dataset – takes advantage of Modin’s extremely 
light-weight, robust Dataframe & readcsv operation which 
scales with cores, unlike pandas

• Operations in feature engineering are memory bound and 
benefit from the faster memory access speeds

• Microarchitecture factors like higher core frequency, cache size, 
cache BW help improve XGBoost performance

PLAsTiCC Astronomical 
Classification

Unoptimized - Phase-wise %time 
breakdown

Data Ingestion Feature Engg

Machine Learning

46%

44%

10%

51%
45%

4%
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E2E Recommendation System (E2E DIEN)
E2E DIEN: A representative E2E inference workload of recommendations that provides the capability of estimating use 
clicks at scale. 

Json 
Parsing

FEATURE ENGINEERING

Join
Label 

Encoding
Get Click 
History

Negative 
Sampling

Split 
data

json
csv

pickle

DEEP LEARNING

… pretrained 

model

Prepare 
data

Model 
Restore 

Inference

Prepare 
data

Model 
Restore 

Inference

D
O

C
K

E
R

Data 
Persistence

Intel Neural Compressor 
INT8 Quantization
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Deeper Analyses and insights: Optimizations

Optimized frameworks take advantage 
AVX512 and AMX instructions.

Conversion to Ops to Intel oneDNN (MKL) Ops  
optimized for Intel HW

Operator Fusions enable even more speedup 
& efficient use during runtime execution.

• GRU(MklFusedMatmul)

• Attention layer(MklFusedMatmul)  

E2E DIEN
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E2E Recommendation System (E2E DIEN)
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Stock Software Optimized Software Optimized Software w/
Multi-instances

Optimized Software w/
Multi-instances &
Hyperparameters

Optimizations
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E2E Recommendation System (DIEN)
Path to efficient AI

6x
Modin/Spark, Intel 
Extension for 
Tensorflow

3.8x
56 instances, 1 core 
per instance

Configuration: Hardware: Single node, 2 x Intel Xeon Gold 6348 (28 cores), OS: RHEL 8.4, 384 GB RAM (512 GB RAM: 12 x 32 GB 

3200 MHz), kernel: 4.18.0-305.el8.x86_64, microcode: 0xd000280, CPU governor: performance.

Software: Modin 0.12.0, Python 3.8.10, intel-tensorflow-avx512 2.7.0.

E2E Recommendation system got significant improvement of ~23x over baseline by applying multiple 
optimization strategies together.
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E2E NLP Document-level Sentiment Analysis (DLSA)
A representative E2E Fine-Tuning & Inference  NLP workload with Sentiment Analysis Task on Huggingface Transformer API

StorageStorage
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Optimized frameworks take advantage AVX512 and 
AMX instructions.

Conversion to Ops to Intel oneDNN (MKL) Ops  
optimized for Intel HW

Operator Fusions enable even more speedup & 
efficient use during runtime execution.

• Gelu (Bunch of smaller ops fused to Gelu Op tf.nn.gelu)

• Fusion of MatMul + BiasAdd + Gelu(MklFusedMatmul) 

• Fusion of BatchMatMul + Mul + Add(MklBatchMatmul)

• LayerNormalization (Bunch of smaller ops for keras layernorm
api)(MklLayernorm)

E2E NLP Sentiment Analysis (DLSA)



Fine-Tuning Explained with Context to Hugging face DLSA
• Process of using a pretrained model, trained on a different source dataset, to train (modify training parameters) of a new target 

model (fine-tune it) with a different task (output layer) using a different target dataset .

• In DLSA we use BERT model for Masked-Language-Modeling task pretrained on large corpus of English data, to fine tune a new 
BERT model for sentiment analysis task on SST-2 or IMDB dataset.

https://d2l.ai/chapter_computer-vision/fine-tuning.html
https://www.machinecurve.com/index.php/2021/01/02/intuitive-introduction-to-openai-gpt/


E2E NLP Sentiment Analysis Inference (DLSA)

O p t i m i z e d

A I / A n a l y t i c s

P a c k a g e s

Parallelize

• single instance 
to multi-
instance

• single node to 
multi-node

Vectorize

• High vector 
efficiency 
through  
oneDNN 
optimization 
library.

Graph Opt

• OP fusion

• Batch 
normalization

• Weight 
Caching

Precision

• Auto Mix 
Precision (BF16)

• 8-bit  
Quantization 
using INC.

Powered by Intel optimized AI/Analytics Packages

Optimized to fully utilize modern parallel HW

Xeon 
CPU

ARC 
GPU
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E2E Document Level Sentiment Analysis (DLSA)
Path to efficient AI

1.27x

2.17x

1.22x

E2E DLSA got significant total improvement of ~3.36x over baseline by applying multiple optimization strategies together.

Configuration: Hardware: Single node, 2 x Intel Xeon Gold 6348 (28 cores), OS: RHEL 8.4, 384 GB RAM (512 GB RAM: 12 x 32 GB 

3200 MHz), kernel: 4.18.0-305.el8.x86_64, microcode: 0xd000280, CPU governor: performance.
Software: Python 3.8.10, PyTorch 1.10, intel-extension-for-pytorch 1.10, transformers 4.15.0
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Call To Action

▪ Efficient AI happens when AI frameworks and libraries, system tuning, model & 
hyperparameter optimization and run-time parameter tuning all work together cohesively

▪ A clear path towards end-to-end AI performance roofline is achievable

▪ Every phase of an end-to-end AI pipeline needs to be efficient and optimized to realize  an 
overall effective AI solution 

▪ Performance acceleration with “optimization toolbox” strategies on CPUs brings 
significant boost in efficiency for end-to-end AI pipelines


