
13th Workshop on Accelerating Analytics and Data Management (ADMS22), September 2022, Sydney, Australia

What Are You Waiting For?
Use Coroutines for Asynchronous I/O to Hide I/O Latencies and
Maximize the Read Bandwidth!

1

2

Why Are We Interested in SSDs?
DRAM Is Expensive

• The trend of dropping DRAM prices
slowed down significantly

• The amount of data we want to analyze
is ever-growing

• The cost of buying enough DRAM
capacity increases disproportionally

• In-memory systems are increasingly
becoming uneconomical

⇒

⇒

3

Figure copied from "Exploiting Directly-Attached NVMe Arrays in DBMS" (Haas et al., CIDR '19)

Why Are We Interested in SSDs?
SSDs Keep Improving

• SSDs are 30 times cheaper than DRAM

• 7 GB/s read bandwidth over 4 PCIe 4.0
lanes using the NVMe interface

• Modern CPUs have enough PCIe 4.0
lanes for 16 directly-attached SSDs (e.g.,
using RAID 0)

• Theoretical read bandwidth of 112 GB/s

4

Figure copied from "Exploiting Directly-Attached NVMe Arrays in DBMS" (Haas et al., CIDR '19)

Exploiting SSDs Is Challenging
Keep All Flash Chips Busy

• SSDs consist of dozens of flash chips:

• manage a subset of the storage cells

• can be accessed in parallel

• How to achieve high bandwidth?

• Read hundreds of pages in parallel to
provide work for all flash chips

5

Exploiting SSDs Is Challenging
High Read Latency

• The latency of reading data from
SSDs is much higher than from
DRAM

• With a synchronous (blocking) I/O
interface, threads spend a lot of time
waiting

• The CPU and the SSDs are
underutilized

6

What Are You Waiting For?

Use Coroutines for Asynchronous I/O to Hide
I/O Latencies and Maximize the Read
Bandwidth!

7

Building Blocks
Asynchronous I/O

• io_uring (new Linux I/O interface) for
asynchronous I/O

• Provides two operations:

1. Submitting an I/O request (non-
blocking)

2. Waiting or polling for the completion
of submitted requests

• Use asynchronous I/O to schedule
hundreds of parallel I/O requests to
provide work for all flash chips!

8

Building Blocks
C++20-Coroutines

• For asynchronous I/O, we need to
suspend a function on an I/O request

• A coroutine is a function that can
suspend execution to be resumed
later

• Sequential code that executes
asynchronously

• Use coroutines to hide the I/O latency
by suspending a function on an I/O
request and resuming another!

9

Micro-Benchmarks

10

Asynchronous I/O for Query Processing
Hardware Overview

• AMD EPYC CPU with 64 cores (128
hardware threads)

• 512 GiB of DDR4-3200 RAM

• 8 Samsung PM9A3 PCIe 4.0 NVMe
SSDs

• Linux software RAID 0

11

Asynchronous I/O for Query Processing
Experimental Setup

• Asynchronous I/O for table scans:

• TPC-H Q1 (low-cardinality aggregation)

• Asynchronous I/O for index lookups:

• TPC-H Q14 using an asynchronous index-
nested-loop join

• LeanStore-based buffer manager using direct I/O

• Morsel-driven parallelism with a coroutine-per-
morsel approach

12

sync_wait(when_all_ready(…))

Asynchronous I/O for Query Processing
Higher Throughput with Less Compute

• For sequential I/O, asynchronous I/O allows us
to reach higher throughput than
synchronous I/O with 4 times fewer threads

• For random I/O, asynchronous I/O achieves
better performance with 16 times fewer
threads

• Frees up resources for in-memory workloads,
or allows downsizing the compute resources
for more economical operation

13

Asynchronous I/O for Query Processing
Graceful Degradation for Out-Of-Memory

• What happens if the working set’s size exceeds
the memory capacity?

• Even with 90% cached, the throughput of
synchronous I/O is still 15 GB/s below the
throughput of asynchronous I/O when nothing
is cached

• Asynchronous I/O gets very close to the
optimal throughput

14

Asynchronous I/O in a Code-
Generating System

15

Asynchronous I/O in Umbra
Umbra Does Not Generate C++ Code

• Umbra: Code-generating system written in C++ supporting out-of-memory
execution

• Umbra allows us to call pre-compiled C code

• We can wrap a C++-Coroutine into C code (see paper)

• We need to be able to await C++-Coroutines from the generated code

• Therefore, we need Codegen-Coroutines:

• Compilation backends translate a Codegen-Coroutine into a state
machine (see paper)

16

Asynchronous I/O in Umbra
Add Support for Asynchronous Index-Nested-Loop Joins

• Evaluate TPC-H Q4, Q5, and Q10 on SF100

• 16 threads, I/O depth per thread of 256, 128
tuples per coroutine

• Direct I/O

• Varied the size of the buffer manager to
simulate out-of-memory

• Increasing the number of threads to 64 or
128 makes performance difference disappear

17

Conclusion

• Reach high throughput with fewer threads than synchronous I/O

• Flatten the performance cliff when going out-of-memory

• Low end: more economical, high-performance data analysis

• High end: process terabytes of data with near in-memory performance on a
single node

18

