What Are You Waiting For?

Use Coroutines for Asynchronous 1/0 to Hide 1/0 Latencies and
Maximize the Read Bandwidth!

13th Workshop on Accelerating Analytics and Data Management (ADMS22), September 2022, Sydney, Australia

What Are You Waiting For? Use Coroutines for Asynchronous 1/0O
to Hide 1/0O Latencies and Maximize the Read Bandwidth!

Leonard von Merzljak

Technical University of Munich
leonard.von-merzljak@tum.de

Thomas Neumann
Technical University of Munich
thomas.neumann@in.tum.de

ABSTRACT

In the last ten years, SSDs achieved astonishing improvements in
capacity per dollar and performance. Today, they are 30x cheaper
than DRAM, and the difference is growing. Additionally, they are
more than ten times faster than a few years ago, with a single SSD
providing a throughput of 7 GB/s. Modern servers have enough
PCle lanes to directly attach multiple NVMe SSDs. That allows us to
linearly scale the storage throughput and diminish the bandwidth
gap between DRAM and SSDs. However, it requires a lot of parallel
I/O requests to exploit multiple directly-attached SSDs, and the
read latency is also very high.

In this paper, we propose to use asynchronous I/O and coroutines
to continuously generate a lot of parallel I/O requests and hide the
I/0O latency. As a result, we get optimal throughput with up to 16x
less compute resources than synchronous I/O, and we substantially
flatten the performance cliff when exceeding main memory. We
also show how to integrate coroutines into the code-generating,
analytical DBMS Umbra and describe how we can call pre-compiled
C++-Coroutines from the generated code. Finally, we present our
new asynchronous index-nested-loop join algorithm that improves
Umbra’s end-to-end performance for analytical queries by up to
60%.

Philipp Fent

Technical University of Munich
fent@in.tum.de

Jana Giceva
Technical University of Munich
jana.giceva@in.tum.de

Table 1: Price and performance metrics of DRAM and SSDs.

DRAM SSD
config 8 x 64 GB 8 x 1.92TB
cost-benefit 0.19 GB/$ 5.8 GB/$
seq. read 152 GB/s (> 25 threads) 50 GB/s (> 4 threads)
rand. read 74 GB/s (> 72 threads) 48 GB/s (> 4 threads)

read. latency 181ns (for 64 bytes) 73 us (for 4 KiB)

even if they cache the entire database in-memory, the buffer man-
ager is still the most expensive component of traditional systems.
Since in-memory systems assume that the entire database fits into
memory, they can substantially improve the performance by re-
moving the buffer manager entirely.

1.1 In-Memory DBMSs Are Uneconomical

We currently observe two hardware trends that make us question
the viability of pure in-memory systems and reconsider caching
systems [26, 29]. First, the trend of rapidly dropping DRAM prices
slowed down significantly in the last ten years [16]. Considering

Why Are We Interested in SSDs?

DRAM Is Expensive

* The trend of dropping DRAM prices
slowed down significantly

 The amount of data we want to analyze
IS ever-growing

« = The cost of buying enough DRAM
capacity increases disproportionally

¢ = In-memory systems are increasingly
becoming uneconomical

10 -
disk flash

0.1

GB/$ [log scale]

~ DRAM
0.01 - :

0.0014 %%

2000 2005 2010 2015 2020
year

Figure 1: Historical disk, flash, and DRAM capacity per dollar.

data source: https://jcmit.net/memoryprice.htm
Figure copied from "Exploiting Directly-Attached NVMe Arrays in DBMS" (Haas et al., CIDR '19)

Why Are We Interested in SSDs?

SSDs Keep Improving

« SSDs are 30 times cheaper than DRAM

» 7 GB/s read bandwidth over 4 PCle 4.0
lanes using the NVMe interface

 Modern CPUs have enough PCle 4.0
lanes for 16 directly-attached SSDs (e.q.,
using RAID 0)

e Theoretical read bandwidth of 112 GB/s

10 -
disk flash

0.1

GB/$ [log scale]

~ DRAM
0.01 - ¢

0.0014 %%

2000 2005 2010 2015 2020
year

Figure 1: Historical disk, flash, and DRAM capacity per dollar.

data source: https://jcmit.net/memoryprice.htm
Figure copied from "Exploiting Directly-Attached NVMe Arrays in DBMS" (Haas et al., CIDR '19)

Exploiting SSDs Is Challenging

Keep All Flash Chips Busy

 SSDs consist of dozens of flash chips:

00000202000 0222020202202020202202020224
€L LLLLLLLLLLLLLLLLLLLLLKLLKK««K

 manage a subset of the storage cells

0000000022020 2022020202020202202222024
€L«

 can be accessed in parallel

0000000022020 20220202222022022220204
€L LLLLLLLLLLLLLLLLLLLLKLLKL«K

. . o
* How to achieve high bandwidth’ . T SSDs with high in-
bandwidth PCle lanes ternal parallelism

 Read hundreds of pages in parallel to
prOVide work for all flash ChipS Figure 2: The storage architecture of modern SSDs.

T

Exploiting SSDs Is Challenging

High Read Latency

 The latency of reading data from #include <unistd.h>
SSDS iS mUCh higher than frOm bool doPread(int fd, void *buf, size t count, off t offset) {
while (count) {
DRAM o xes ~[presatis, ot come crraeny)
if (res < 1
« With a synchronous (blocking) I/0 , e fatses
interface, threads spend a lot of time count -= res;
=g = buf = static_cast<char *>(buf) + res;
Waltlng offset += res;
}
e The CPU and the SSDs are return trues

}

underutilized

What Are You Waiting For?
Use Coroutines for Asynchronous I/0 to Hide

|/0 Latencies and Maximize the Read
Bandwidth!

Building Blocks

Asynchronous |I/0

* 10_uring (new Linux I/O interface) for lo_uring ring;
asynChrOnOUS /0 // Submit an I/0 request

io_uring_sqe *sqe = io_uring_get_sqe(&ring) ;

* Provides two operations:

1. Submitting an I/O request (non-
blocking)

// Do something useful in the meantime ...

2. Waiting or polling for the completion // wait for the completion of the I/0 request
of submitted requests io_uring_cqe xcge;

void *data = io_uring_cqe_get_data(cqe);
io_uring_cqe_seen(&ring, cqe);

 Use asynchronous /O to schedule
hundreds of parallel 1/0 requests to
provide work for all flash chips!

T

Building Blocks

C++20-Coroutines

° FOr asynchrOnOUS I/O we need tO task<bool> doAsyncRead(IDUring &ring, int fd, void x*buf,
] ’ size_t count, off_t offset) {
suspend a function on an I/0 request ..:1c ccount) + -

A coroutine is a function that can

) if (res < 1) {
suspend execution to be resumed
later }

count —-= res,

buf = static_cast<char *>(buf) + res;
offset += res;

e Sequential code that executes
asynchronously }

co_return true;

 Use coroutines to hide the I/0 latency '
by suspending a function on an I/0O
request and resuming another!

Micro-Benchmarks

T

Asynchronous I/0 for Query Processing

Hardware Overview

« AMD EPYC CPU with 64 cores (128

hardware thread S) Table 1: Price and performance metrics of DRAM and SSDs.
512 GIB of DDR4-3200 RAM DRAM SSD
config 8 x 64 GB 8 x 1.92TB
8 Samsung PM9A3 PCle 4.0 NVMe cost-benefit 0.19 GB/$ 5.8 GB/$
SSDs seq. read 152 GB/s (= 25 threads) 50 GB/s (> 4 threads)
rand. read 74 GB/s (> 72 threads) 48 GB/s (> 4 threads)
read. latency 181ns (for 64 bytes) 73 Uus (for 4 KiB)

e Linux software RAID O

11

T

Asynchronous I/0 for Query Processing

Experimental Setup

* Asynchronous |/O for table scans:

. . . BARBAR Thread 1 E 7) .
 TPC-H Q1 (low-cardinality aggregation) S e
BABERB Vo B S
- k@k a*@ oroutine * . e
* Asynchronous I/O for index lookups: NS chehing gy
| _ BRERRB &—N—0c—r—
e TPC-H Q14 using an asynchronous index- MABRR ’\\ B
n eSted - I O O p j O I n Morsels s L sync_wait(when_all_ready(...))

* LeanStore-based buffer manager using direct 1/0

Figure 4: Threads fetch multiple morsels for table scans and
start one coroutine per morsel.

 Morsel-driven parallelism with a coroutine-per-
morsel approach

12

T

Asynchronous 1/0 for Query Processmg

Kind of I/O (I/O depth per thread)
ngher Throughput with Less Compute 2 -
» For sequential I/0, asynchronous I/O allows us ~ ~:-
to reach higher throughput than F
synchronous I/O with 4 times fewer threads ———

Number of threads

For random |/O, asynchronous I/O achieves

Figure 5: Throughput per thread of processing TPC-H Q1.

better performance with 16 times fewer Page size of 64 KiB, 60% cached.
th read S éﬁ B Kinds(;fl I'/((l)) (1/O depth per thread)
Frees up resources for in-memory workloads,
or allows downsizing the compute resources Sanc| ’_\
for more economical operation B~
2 I I I | I I T\ T

Number of threads

13 Figure 8: Lookups per second per thread of processing TPC-H
Q14. Page size of 4 KiB, 60% cached.

T

Asynchronous 1/0 for Query Processmg

Graceful Degradation for Out-Of-Memory] :— """
 What happens if the working set’s size exceeds "
the memory capacity?
_ 0% 10% % 0% 40% 0% 60% 0% 80% S0% 100%
 Even with 90% cached, the throughput of Fraction of pages cached in main memory
SyﬂChrOﬂOUS I/O IS Stl” 15 GB/S beIOW the Figure 6: Throughput of processing TPC-H Q1. Page size of
throughput of asynchronous I/O when nothing 64 KiB. 8 threads.

150

IS cached

130 —

Kind of I/O (I/O depth per thread)

 Asynchronous I/O gets very close to the
optimal throughput

40 - SSD Bandwidth

0 I I I I I I | | I I
0% 100% 20% 30% 40% 50% 60% 0% 80% 90% 100%

Fraction of pages cached in main memory

14 Figure 7: Throughput of processing TPC-H Q1. Page size of
64 KiB, 32 threads.

Asynchronous I/0 in a Code-
Generating System

T

Asynchronous I/0 in Umbra

Umbra Does Not Generate C++ Code

 Umbra: Code-generating system written in C++ supporting out-of-memory
execution
 Umbra allows us to call pre-compiled C code

 We can wrap a C++-Coroutine into C code (see paper)

 We need to be able to await C++-Coroutines from the generated code
 Therefore, we need Codegen-Coroutines:

 Compilation backends translate a Codegen-Coroutine into a state
machine (see paper)

16

Asynchronous I/0 in Umbra
Add Support for Asynchronous Index-Nested-Loop Joins

 Evaluate TPC-H Q4, Q5, and Q10 on SF100 ««

- Q Q4 A Q Q
» 16 threads, I/0 depth per thread of 256, 128 :
tuples per coroutine 7
S 30 %
* Direct I/O - \
* Varied the size of the buffer manager to ol " " .
simulate Out-Of-memory Fraction of pages cached in main memory

Figure 10: Asynchronous index-nested-loop joins on the TPC-

* |ncreasing the number of threads to 64 or H benchmark.
128 makes performance difference disappear

17

Conclusion

* Reach high throughput with fewer threads than synchronous |/O
» Flatten the performance cliff when going out-of-memory
 Low end: more economical, high-performance data analysis

 High end: process terabytes of data with near in-memory performance on a
single node

18

