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ABSTRACT
In-memory column-oriented databases have become a major
topic of interest in academia and commercial applications.
The demand for analytics on up-to-the-minute data and the
availability of systems with hundreds of gigabytes of main
memory led to the proposal of combined systems, which
provide a single database for operational processing and ad-
hoc analytical queries on current data. Recent research has
identified In-Memory Column-Stores as a possible database
architecture to meet these requirements. They are claimed
to be capable of delivering the analytical insights while pro-
viding sufficient transactional performance. Data therein
is typically split up into a write-optimized partition, which
gains speed from its small size and tree-structured indices,
and a larger read-only partition. To enable fast transactional
and analytical performance, an index on the large, read-only
partition is advisable in many cases. In this paper we present
an index structure for the read-only partition, describe its
advantage over the column scan and present an algorithm for
the maintenance of the index. The index drastically reduces
the memory traffic during query execution, leading to faster
lookups and joins, thereby providing benefits to transactional
and analytical processing.

We analyze the memory traffic of index lookups in compar-
ison with full column scans and the maintenance of the index
structure. We develop formulas to determine the viability of
an index lookup over a column scan at query runtime. While
other research claimed that an index for in-memory systems
should just be rebuild after every bulk-load, we show that a
substantial performance increase can be achieved by reusing
the former index to create an updated index.
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1. INTRODUCTION
In-Memory column stores such as Sanssouci DB [6] and

HYRISE [3] answer queries by scanning the whole column
to apply a predicate. Although this operation is fast in
comparison with disk based systems, since the data resides in
main memory, it wastes memory bandwidth and processing
power. We can decrease the response time and memory
traffic by using a special inverted index, which we will call
the Group-Key index, to replace column scans with index
lookups.

Enterprise workload consists of many scan operations with
a selectivity that favors an index, a speed-up thereof conse-
quently leads to a better overall system responsiveness and
decreases system utilization, which will allows to process
more queries with an equally sized machine.
While most indexing schemes are built for frequently up-

dated data partitions, many in-memory column store designs
hold the majority of the data in a dictionary encoded read-
only partition. Consequently, directly updatable indexing
schemes, such as tree structures, consume more storage than
necessary.
The Group-Key index increases the query performance,

by providing a mapping to all positions for each value. The
Group-Key index is only applied to the read-only part, and
does not decrease the peak-insert performance [5], because
index maintenance is only performed, when the writable
partition is integrated into the read-optimized main partition.
In this paper we will explain the advantage of the index

at runtime, and integrate the index maintenance into the
creation of the read-only partition, thereby reducing the
overhead of index rebuilding significantly.
All symbols that are used throughout the paper can be

found in Table 1.

1.1 Background and Prior Work
We briefly summarize the database system, the used com-

pression technique and refer to prior work.

1.1.1 Column Stores with Write-Optimized Partition

Column stores have been in the focus of research [9, 10,
11], because their performance characteristics make them a



Description Unit Symbol
Number of columns in the table - N C

Number of tuples in the main/delta
partition

- N M ,N D

Number of tuples in the updated ta-
ble

- N �
M

For a given column j ; j ! [1 . . . N C ]:
Main/delta partition of the j th col-
umn

- M j ,D j

Merged column - M �j

Attribute vector of the j th column. - V j
M,V j

D

Updated main attribute vector - V �j
M

Sorted dictionary of M j/D j - U j
M,U j

D

Updated main dictionary - U �j
M

CSB+ Tree Index on D j - T j

Uncompressed Value-Length bytes E j

Compressed Value-Length bits E j
C

New Compressed Value-Length bits E �j
C

Length of Address in Main Partition bits A j

Fraction of unique values in M j/D j - ! j
M,! j

D

Auxiliary structure for M j / D j - X j
M,X j

D

Index Offsets / Postings - I j ,P j

Cache Line size (typical: 64 bytes) bytes L
Memory Traffic bytes MT

Table 1: Symbol Definition. Entities annotated with " repre-
sent the merged (updated) entry.

good fit for analytical (OLAP) processing.
Other researchers have proposed, that these systems can

handle a mixed workload of transactional (OLTP) and ana-
lytical queries [6], and become the combined data source for
systems that handle OLTP and OLAP workloads.

Hardware development, especially the availability of large
main memory systems at economical prices, has enabled
database vendors to construct systems that keep all data in
memory, by using dictionary compressed [6] columns. Values
are represented by bit-packed value-ids which reference the
uncompressed values in a sorted dictionary, so the domain of
each column is stored in the dictionary, and shorter value-ids
are stored in the attribute vector.
To avoid inserting into the ordered dictionary and the

costly re-encode of the bit-packed attribute vector, these
systems typically split a table into a compressed read-only
and a writable part [3, 6, 9]. The writable part, here called
delta partition, is combined with the read-only main partition
from time to time, to reduce the memory footprint, and keep
the writable part small and fast. This merge process is
covered in detail in Section 4.

1.1.2 Lightweight Bit-Packing

Data in main memory can be compressed to reduce the
memory footprint and the memory traffic. If the overhead of
decompression is smaller than the benefits gained through
bandwidth savings, the overall system performance can in-
crease through the use of compression. In this paper we use
bit-packing [10] to encode the attribute vector and our index
structures. Bit-packing encodes positive integers of a certain
range in the minimum amount of bits that are needed to
express the largest element of the range, e.g. let x be the

rightmost element of the range, then each element of the
range can be encoded in #log2 x$ bits.
Scanning, compression and decompression of bit-packed

vectors can also gain performance through the use of the
SIMD units of current CPUs [10]. With the recent increase
of the SIMD-register size to 256 bits as part of the Advanced
Vector Extensions we can expect further improvements in
the performance of scanning, compression and decompression
functions on bit-packed values

1.1.3 Dense-, Covering-, Lookup- Indices

Classical database indices are constructed to reduce the
search scope during query execution. In a row oriented
database a memory-resident index on a certain column might
present an ordered list of value-position pairs, that allows
for binary search on the index and a direct addressing of the
data on disk. Dense indices contain entries for every record of
the database table. Covering indices contain enough data to
answer queries directly, without consulting the original table
data, which is especially helpful in low selectivity scenarios.

Transactional workloads typically select only a few tuples
in each query. Analytical workloads, although often oper-
ating on the complete table and domain, have to perform
joins of the fact and dimension tables, for which an index
can be used. Because column stores with a dictionary en-
coded domain use late materialization, so that for internal
processing only positions are used, a covering index is the
most efficient choice. It allows the database to replace the
scan operation of the column with an index lookup, and to
continue processing with the returned positions lists.

In our experimental database system the search scope for
a single attribute is already reduced through the usage of the
domain encoded column-layout. Additionally the index and
the data reside in the same level on the storage hierarchy.
We therefore present a dense and covering lookup index
structure, that allows to answer queries directly and has an
entry for each value.

1.1.4 Related Work

Important work on main-memory indices has been done
by Rao and Ross [7], but their indexing method applies to
the value-id lookup in the sorted dictionary rather then the
position lookup that we will focus on in this paper. Since
they focus on Decision Support Systems (DSS), they claim
that an index rebuild after every bulk-load is viable. In
this paper we assume a mixed-workload system, where the
merge-performance must be kept as high as possible, hence
we reuse the old index to build an updated index.

Idreos et al [4] present indices for in-memory column stores
that are build during query execution, and adapt to changing
workloads, however the integration of the indexing schemes
into the frequent merge process of the write-optimized and
read-only store is missing.

1.2 Paper Structure and Contributions
In the following section we define the Group-Key index and

clarify its relation with the encoded column. We analyze the
memory traffic savings during query execution. In Section
3 we present an algorithm to rebuild the index and analyze
its memory traffic. It follows the definition of the column
merge process in Section 4, and later on the integration of
the index maintenance into the column merge. We compare
the memory traffic of these algorithms in theory in Section 6,



and verify the conclusions in our prototype in the following
section.

The contributions of this work include the first presentation
of a Group-Key index-aware column merge process and the
quantification of the performance impact.

2. GROUP-KEY INDEX
In this Section we present a dense, bit-packed Group-

Key index for the main partition of an in-memory column
j . The main partition contains two structures: the sorted
dictionary U j

M and the bit-packed attribute vector V j
M of

value-ids which refer to the position of the original value in
the dictionary .

The Group-Key index consists of two separate structures:
The offset structure I j and the postings structure P j . I j

maps value-ids to offsets in P j , where positions in the at-
tribute vector are recorded, at which the value-id is found.
In particular, the interval in Equation 1 contains all positions
for a value-id v.

!
P j [I j [v]], ..., P j [I j [v + 1] %1]

"
(1)

Accordingly, all occurrences of a certain value-id can be found
with the bounds from I j and the resulting position list from
P j .

The relationship between the involved structures is shown
in Figure 1. As an example, the steps that are necessary to
find all positions of charlie are marked. First, the value is
translated to a value-id by performing a binary search on
U j

M, then the according offsets in I j are read (2,3), and the
referenced right-open interval from P j is retrieved (4). Note
that the resulting list is ordered for a single-value predicate
and can be streamed directly to the next operator in the
query pipeline. For range queries a merging of the sorted
position lists is necessary.
Both structures of the Group-Key index are bit-packed

with A j bits per value, which are needed to address a position
in the main partition, as shown in Equation 2.

A j = #log2(N M )$ bits (2)

Therefore, the sizes of I j and P j are given in Equations 3
and 4.

sizeof (I j) =(|U j
M| + 1) á

A j

8
bytes (3)

sizeof (P j) =N M á
A j

8
bytes (4)

Accordingly, after the delta and main partition are merged
to form M �, the resulting new index structure sizes depend
on the size of the new main partition N �

M and the cardinality
of the new dictionary U �j

M.

3. REBUILD OF THE GROUP-KEY INDEX
After the main and delta partitions have been combined to

a new partition, the Group-Key index needs to be updated
to reflect the changes. To obtain a Group-Key index for
a column without an index, or for a newly merged main
partition we run an indexing process after the execution of
the merge process. The indexing process consists of three
steps:
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Figure 1: A Group-Key index on the Main Partition

1. Counting occurrences of value-ids. We create a
new structure I �j with size |U �j

M| + 1 and iterate once
over V �j

M and count the occurrences of value ids at their
respective position in I �j .

2. Creating o!sets for P �j in I �j . By iterating once
over I j we create the prefix-sum of I �j , creating offsets
for the P �j structure. Additionally we create an exact
copy I �jcopy.

3. Creating postings in P �j . We use I �jcopy as a write
counter. We iterate once again over all elements i !
V �j

M, obtain the write-offset from I �jcopy, by looking up

I �jcopy[i ] and write the current position in V �j
M to P �j .

To ensure that further writes regarding the same value-
id are directed to the next position in P �j , we increase
the write-offset at I �jcopy[i ] after every read by 1.

I �jcopy is deleted afterwards. I �j and P �j represent the new
Group-Key index. Step 1 and Step 3 are dependent on the
length of the new column, each executes in O(|V �j

M|). Step
2 is dependent on the length of the dictionary, O(|U �j

M|).
The memory traffic of Step 1 consists of reading the at-

tribute vector and writing the positions. Because no inherent
order between consecutive values can be assumed, every
write-operation of I �jcopy and P j will possibly be directed to-
wards a different cacheline. The memory traffic, including the
fetch-for-write component, of Step 1 is given in Equation 5.
In Step 2, the index offsets structure is modified sequen-

tially, and copied. Its size is (|U �j
M| + 1) áA �j bits, and the

memory traffic is given in Equation 6. In Step 3 the attribute
vector is read sequentially, and the postings-structure and
the offset-write-counter are written randomly, leading to the
read and write of a cacheline each. Equation 7 summarizes
the costs of Step 3.

MTStep1 =2 áN �
M áL + N �

M á
A j

8
bytes (5)

MTStep2 =4 á(|U �j
M| + 1) á

A j

8
bytes (6)

MTStep3 =4 áL áN �
M + N �

M á
A j

8
bytes (7)

Rebuilding the index by inserting all value-position pairs
into a tree structure is much less performant than the here
proposed rebuilding algorithm.



4. COLUMN MERGE
The in-memory column store maintains two partitions for

each column: a read-optimized, compressed main partition,
and a writable delta partition. To allow for fast queries on
the delta partition, it has to be kept small. To achieve this,
the delta partition is merged with the main partition after its
size has increased beyond a certain threshold. As explained
in [5] the performance of this merge process is paramount
to the overall sustainable insert performance. The inputs to
the algorithm consists of the compressed main partition and
the uncompressed delta partition with an CSB+ tree index.
The output is a new dictionary encoded main partition.

The algorithm is the basis for our index-aware merge
process that will be presented in Section 5.
In brackets we refer to the sub-steps shown in Figure 2.

We perform the merge using the following two steps:

1. Merging Main Dictionary and Delta Index, Cre-
ating value-ids for D j .

We simultaneously iterate over U j
M and the leafs of

T j and create the new sorted dictionary U �j
M and the

auxiliary structure X j
M(Mx, Dx, Bx) . Because T j

contains a list of all positions for each distinct value
in the delta partition of the column, we can set all
positions in the value-id vector V j

D. (D2,B3). This
leads to non-continuous access to V j

D. Note that the
value-ids in V j

D refer to the new dictionary U �j
M.

2. Create New Attribute Vector. This step consists
of creating the new main attribute vector V �j

M by con-
catenating the main and delta partition’s attribute
vectors V j

M and V j
D. The compressed values in V j

M

are updated by a lookup in the auxiliary structure X j
M

(UMx) as shown in Equation 8. Values from V j
D are

copied without translation to V �j
M(UD1). The new at-

tribute vector V �j
M will contain the correct offsets for

the corresponding values in U �j
M, by using E �j

C bits-per-
value, calculated as shown in Equation 9.

V �j
M[i ] = V j

M[i ] + X j
M[V j

M[i ]] &i ! [0...N M %1] (8)

Note that the optimal amount of bits-per-value for the
bit-packed V �j

M can only be evaluated after the cardinality
of U j

M ' D j is determined. If we accept a non-optimal
compression, we can set the compressed value length to the
sum of the cardinalities of the dictionary U j

M and the delta
CSB+ tree index T j . Since the delta partition is expected
to be much smaller than the main partition, the difference
from the optimal compression is low.

E �j
C = #log2(|U

j
M ' D j |)$ ( # log2(|U

j
M| + |T j |)$ (9)

Step 1’s complexity is determined by the size of the union
of the dictionaries and the size of the delta partition. Its
complexity is O(|U j

M ' U j
D| + |D j |) . Step 2 is dependent

on the length of the new attributevector, O(N M + N D).

4.1 Memory Traffic of the Column Merge
As far as the total amount of data read from the main

memory is concerned, the total amount of memory required
to store the tree is around 2X the total amount of memory
consumed by the values themselves [8].

Algorithm 1 Extended Dictionary Merge

1: procedure ExtendedDictionaryMerge
2: d, m, n, c = 0
3: while d != |T j | or m != |U j

M| do
4: processM = (U j

M[m] < = T j [d] or d == |T j |)
5: processD = (T j [d] < = U j

M[m] or m == |U j
M|)

6: I �j [n] ) c " The Start of the position list.
7: if processM then
8: U �j

M[n] ) U j
M[m]

9: X j
M[m] ) n %m

10: count = I j [m + 1] %I j [m]
11: P �j [cá á á] ) [P j [I j [m]] á á áP j [I j [m + 1]])
12: c+ = count
13: m ) m + 1
14: end if
15: if processD then
16: U �j

M[n] ) T j [d]
17: count = size(T j [d].positions )
18: [P �j [c] á á áP �j [c+ count]) ) T j [d].positions

Store n in V j
D at all positions from T j [d].positions

19: c+ = count
20: d ) d + 1
21: end if
22: n ) n + 1
23: end while
24: I �j [n] ) c " The End-Marker
25: end procedure

Updating the tuples involves reading their tuple-id and
a random write-access into V j

D to update the tuple. Since
each access would read a cache-line (L bytes wide) the total
amount of bandwidth required would be (2 áL +4) bytes per
tuple (including the read for the write component).

To summarize, the memory traffic of our merge algorithm
includes reading the main dictionary and the CSB+ tree, and
all position lists therein; as well as writing the new dictionary,
the main auxiliary structure and the delta attribute vector.

MTTj =2 áE j á |T j | (10)

MTStep1Read =MTTj + E j á(|U j
M|) (11)

MTStep1Write =2 á

#

E j á |U �j
M| +

E �j
C á(|X j

M|)
8

+ L áN D

$

(12)

The exact memory traffic that incurs from reading the
main aux structure is highly dependent on the actual data,
randomized data will lead to many more misses than sorted
data, however we will use Formula 13 to estimate the traffic
for auxillary structures that do not fit the caches.

MTMainAux =N M áL (13)

MTStep2Read =N M áE j
C / 8 + MTMainAux (14)

MTStep2Write =2 áN M áE �j
C / 8 (15)

5. EXTENDED COLUMN MERGE
We now integrate the index rebuild into the column merge

process. This allows us to reduce the memory traffic, and
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create a more efficient algorithm to merge columns with an
Group-Key index.

We extend Step 1 of the column merge process from Section
4 to maintain the dense bit-packed index. The count of all
records that correspond to already merged values is kept
in a variable C . During the dictionary merge we perform
additional steps for each processed dictionary entry. Before
processing the next dictionary entry, C is written to I �j [n],
with n denoting the new value-id. The substeps are extended
as follows:

1. For Dictionary Entries from the Main Partition
Read the begin and end offset from I j , copy all match-
ing positions to P �j , starting at C . Add the difference
between start and end offset to C .

2. For CSB+ Index Entries from the Delta Parti-
tion Read all positions from T j , increase them by N M ,
and write to P �j , starting at C . Increase C by the
amount of positions that were written.

3. Entries found in both Partitions Perform both
steps sequentially.

After completing the dictionary merge, C is written to
I j [|U �j

M|] to mark the end of the postings file, and avoid a
special handling for the last value during query execution.

Algorithm 1 shows the detailed steps of the dictionary
merge, where all index related operations are performed.

5.1 Memory Traffic of Augmented Merge
The modified Step 1 additionally reads I j and P j sequen-

tially. During the process the new sturcutres I �j and P �j are
written sequentially. Since Step 2 is unmodified, the differ-
ence regarding the memory traffic between the optimized
merge process and the index-aware augmented merge process
originates from these sequential reads and writes.
Therefore, we calculate the extra read memory traffic as

given in Equation 16 and the extra write traffic (including
the fetch-for-write component) in Equation 17.

MTExtraR = (|U j
M| + N M ) á

A j

8
(16)

MTExtraW =2 á(|U �j
M| + N �

M ) á
A �j

8
(17)

6. EVALUATION
In this section we evaluate the memory traffic during query

execution and the extra memory traffic during the merge
process to determine the viability of the indexing scheme. We
implemented the regular column merge and the index-aware
merge process, as well as index lookup and column scan.

6.1 Impact on Read-Traffic during Query Ex-
ecution

The Group-Key index helps only with query execution on
the read-only main partition. Query execution on the delta
partition is independent thereof and we therefore only con-
sider the savings of the Group-Key index on main-partition
query execution. Our proposed Group-Key index maps value-
ids to positions, but queries include predicates on uncom-
pressed values. The first step of query execution is therefore
to translate the uncompressed value into a value-id by per-
forming a binary search (O(log(|U j

M|))) on the sorted dictio-
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nary U j
M. Since this step has to be done for a full column

scan as well, we can exclude this from the comparison.
Let ! j be the distinct value fraction of column j . Then

every value is expected to occur NM

|Uj
M|

= 1
λj times in a

uniform distribution. Hence, when evaluating a predicate
on a single value, we have to read 1

λj áA j bits, instead of

the whole column, which has N M áE �j
C bits , excluding the

dictionary lookup, which has to be performed for column
scan and index lookup alike.

Note, that we typically need more bits to encode an address
in the main partition, than a value-id, as a consequence of
the implication given in Equation 18.

|U j
M| ( N M * E �j

C ( A j (18)

We calculate the saved memory bandwidth when using
the Group-Key index for a single-value predicate as shown
in Equation 19. The formulas first part is the complete scan
of the attribute vector, the second part is the read-operation
on the index structure of all positions plus the reading of a
single cacheline to obtain the correct offset from I j .

MTS =N M á
E �j

C

8
%

%
1
! j

á
A j

8
+ L

&
(19)

=
N M á #log2(!

j + N M )$
8

%
#log2(N M )$

8 + ! j
%L

In Section 6.3 we will compare the estimated savings during
query execution with the increase of memory traffic for the
index maintenance.

6.2 Index Lookups vs. Column Scans
In this section we will compare the memory traffic of an

index lookup with the costs of a column scan.
Because the Group-Key index stores positions in V j

M, a
single value typically uses more bits than a value-id, as shown
in Equation 18. As a consequence, a column-scan can lead to
less memory traffic, than a lookup in the Group-Key index,
especially if E �j

C << A j . To find the minimum dictionary size
for which a index lookup should consume less memory traffic
for Single-Value predicates and with an assumed uniform
distribution, we need to find the solutions to Inequality 20,
which compares the memory traffic of a column scan to the
memory traffic of the index lookup.

N M á
E �j

C

8
,

%
1
! j

á
A j

8
+ L

&
(20)

N M á #log2(!
j + N M )$

8
,

#log2(N M )$
8 + ! j

+ L

Note that Inequality 20 assumes a uniform distribution, so
every value occurs 1

λj times. As an example, queries on a
column with N M = 100, 000 benefit from the index, if more
than five distinct values are present (with L = 64 bytes). For
very small columns, with less than 1,000 values, the theo-
retical break-even point is high, however, when the column
takes only very few kilobytes of memory, the bandwidth will
not be the limiting factor, but latency. In this paper we
focus on columns that are larger than the CPU cache, and
involve therefore significant amount of memory traffic. As it
is shown in Figure 5, the break-even point for even the largest
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Figure 5: Index lookups vs. column scans in relation to
dictionary size in a uniform-distributed column. Above the
chartline are solutions to Formula 20.

columns is reached with relatively few distinct values. For
columns with a size between millions and trillions of values,
the Group-Key index lookup outperforms the column-scan,
if the dictionary size is larger than about 8 to 10 values, so
that a value in a uniform distribution appears in less than
one tenth of the fields. Smaller dictionaries lead to smaller
attribute vectors, and therefore the memory traffic of the col-
umn scan can be lower, than reading all associated positions
from the index.
Since I j can be used to calculate the count of each dis-

tinct value, we can refine our approximation, to allow the
query optimizer to decide at runtime between reading all
positions from the Group-Key index or to perform a column
scan, without assuming a specific distribution. Recall Fig-
ure 1: Since I j contains offsets into the postings-structure
P j , we can obtain the count of any value, represented by
its value-id as shown in Equation 21. If a range-query is
performed, the value-ids of the interval-limits are obtained,
and the occurrence-count is calculated as shown in Equation
22. Calculating Equation 21 will typically result in reading
one cacheline of L bytes, Equation 22 of two.

count (valueid) =I j [valueid + 1] %I j [valueid] (21)

count (vmin, vmax) =I j [vmax + 1] %I j [vmin] (22)

count (valueid) =count (vmin, vmax)

with vmax = vmin = valueid

We now modify Equation 20 accordingly.

N M á
E �j

C

8
,

%
count (vmin, vmax) á

A j

8

&
(23)

With Inequality 23 a decision for or against the usage of
the index can be made at runtime, and in the presence of a
skewed distribution. The additional memory traffic for the
evaluation thereof is limited to the read of two cachelines, to
obtain the cardinality of the result set.
If a range query is executed, the position-lists have to be

merged, to obtain a ordered position lists, which is typically
required for the next step in a query pipeline. As shown
in [2] this can be achieved by reading all lists only once
from memory, hence the memory traffic can be calculated as
shown.

6.3 Break-Even Point: Savings vs. Merge
With the Equations 16 and 17 given in Section 5.1 it is

possible to calculate the amount of queries that are necessary

N M N �
M ! j #j

Memory

10000 11000 0.05 5.27
1000000 1100000 0.05 4.34
10000000 12000000 0.0001 8.18

Table 2: Queries between merges to offset elevated merge
costs (#j

Memory) for selected configurations.

to compensate the additional memory traffic of the extended
merge process. Under the assumption that our in-memory
column store will be bandwidth-bound, optimization goes
towards reducing the overall traffic of the system, for the
given workload. The first step to determine if maintaining a
Group-Key index is worth the extra costs of the extended
merge process, is to analyze if the extra traffic is offset by
savings during query execution. Other dimensions that have
to be considered are the increased memory-demand, and
the associated initial and operational costs, but also latency
demands. However, in this paper we focus solely on the
bandwidth constraints.

We will compare the estimated savings during query execu-
tion, with the extra-traffic of the augmented merge process.
The amount of queries that offset the augmented merge costs
will be referred to as #j .

|U j
M ' U j

D| is estimated as shown in Equation 24, e.g the
fraction of distinct values before and after a merge process
is assumed to be relatively constant.

|U j
M ' U j

D| - ! j á(N M + N D) (24)

We will focus on single-value predicates, and ignore range
queries for now. In Equation 25 we put the runtime savings
and elevated merge costs into relation to obtain #j .

MTExtraRead and MTExtraWrite are calculated as shown
in Equations 16 and 17 and refer to the additional memory
traffic of the extended merge process. MTS is the saved
memory traffic for each column scan that is replaced by an
index lookup, defined in Equation 19.

#j -
MTExtraRead + MTExtraWrite

MTS
(25)

The break-even point is therefore dependent on the distinct
values, the frequency of the merge process and the column
size. A few, selected results for Equation 25 are given in
Table 2, and a plot in Figure 6. We can conclude, that for
most common configurations, a moderate number (< 20) of
index lookups, which are performed instead of column scans,
already suffices to offset the increased memory-traffic of the
augmented index-aware merge process. However, columns
with only very few distinct values profit less, because the
index lookup has to read many positions, and a position in
P j is in general encoded with more bits than a value-id in
the main attribute vector (see also Equation 18).

6.4 Elevated Merge Costs
The performance of the merge-process is paramount to the

overall sustainable system performance of in-memory column
stores with a separate writable partition. Our augmented
index-aware merge process raises the merge costs, and if the
system is in fact bandwidth-bound, we can calculate the
performance decrease of the merge process by calculating
the relative increase in memory traffic, to which we refer as
$j and define in Equation 26.
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Figure 6: Amount of Index lookups that will offset the extra
memory traffic of index maintenance during the augmented
merge-process. If # < 0 the index lookup leads to more
memory traffic than the column scan (e.g. E �j

C << A j), the
respective peaks are at points from Figure 5.

N M N �
M ! j E j $j

Memory

10000 11000 0.05 4 1.07
1000000 1100000 0.05 4 1.11
10000000 12000000 0.0001 16 1.11
600000 660000 0.0001 4 1.10

Table 3: Theoretical increase of memory traffic with index-
aware extended column merge algorithm.

$j
Memory =1 +

Extra Traffic for Index Maintenance
Merge Traffic

(26)

$j is dependent on the main size, the delta size, the distinct
value count and the size of the uncompressed values. If the
main size grows, costs for index maintenance and merge
costs both grow. However, since the index-merge copy runs
sequentially, and the merge-step needs to make random
lookups for each element, the relative costs for maintaining
the index decrease for large main sizes. The delta size has
a similar influence, although the random access takes place
when updating the attribute vector. The index-aware merge
adds only sequential access.
If the distinct value count grows, the dictionary merge

step becomes more expensive. Since the length of the runs
that are copied sequentially is inversely proportional to the
distinct value count, the access patterns of the index-aware
merge degrades more and more into a random access pattern.

The uncompressed value size affects only the shared steps
(the index operates on value-ids), and therefore bigger values
decrease the relative indexing costs.
Figure 7 shows a plot of the theoretical merge costs for

different distinct-value configurations, and selected results
are given in Table 3. Memory traffic is typically increased by
about ten percent for columns with few distinct values, and
by up to about 25 percent for columns with high distinct
value counts.

7. MEASUREMENT
We implemented a prototype version of the merge process

as presented in Section 4 and the index-aware merge process
from Section 5. A scalar version of the Sanssouci DB [6] bit-
packed attribute vector implementation was used. All tests
were performed on an dual Intel X5650 (Caches: L1d/L2i:
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size is one percent of the main partitions size.
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32KB, L2: 256KB, L3: 12MB) system with 48 GB of DDR3-
1066 RAM. We used the Intel C++ compiler in version
12.1.

In Figure 8 we verify our estimation about the index
viability during query execution. We note, that the measured
break-even point is indeed reached within the expected area
of ! j , representing a few distinct values. Note that the benefit
of the index stagnates for ! j > 10−2, since other costs rather
than memory access begin to dominate the index lookup.
We implemented and measured our column merge algo-

rithm and compared it with the index-aware implementation
thereof. We define

$j
CPUCycles =

CPU Cycles for Index Aware Merge
CPU Cycles for Regular Merge

(27)

and analyze how it corresponds with the theoretical state-
ments drawn from the memory traffic. Since we expect band-
width to be a limiting factor, $j

CPUCycles should correlate

with $j
Memory.

In Figure 9 the advantage of the augmented column merge
becomes visible. Rebuilding the index after the merge pro-
cess is significantly more expensive than augmenting the
column merge. In our measurements rebuilding the index
after the merge on average triples the merge time , while the
augmented column merge only doubles merge time.
When the distinct value count is very small, and only

few entries exist, our models for the memory traffic are
misleading, because the dictionary, the CSB+ index for
the delta partition, the index offset structure and the aux
structure can reside in cache, and the algorithm becomes
computation bound in some phases.
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Although the results show, that the extra index costs follow
the trend defined by the memory traffic, the precision is not
sufficient for a detailed model. However, the results verify,
that the index overhead can be estimated , and that we
can determine an estimate for the CPU-cycle costs from the
calculated memory traffic.
The drops in Figure 9 can be explained by certain favor-

able configurations, at which the distinct-value levels result
in byte-aligned values (e.g E j

C = 8 / 16 / 24 bit) for the com-
pression of the value-id, which carry less processing overhead,
than other configurations.
We also note, that the differences between our memory

traffic based estimation and the measured values should
decrease, with further optimizations of the code, such as
SIMD compression and decompression.

The changes to the merge-algorithm increase the code size,
and thereby decrease locality of access not only to the data
that is merged, but also to instructions. Integrating the index-
merging step into the dictionary step would profit from a
fine grained cache-control, to avoid that data that is going to
be used is evicted by data that should be streamed in or out,
without polluting the caches. In general, putting more work
into the dictionary merge loop will lead to less optimal usage
of write combining buffers. We tested to push the work in a
work list and produce the index after the dictionary merge,
however, the changes were only minimal. The results indicate,
that the index-aware merging step is slightly less bandwidth
bound. We therefore plan to explore how parallelization
across cores can help to maximize performance.
Figure 9 and Figures 10(a)-10(d) reveal, that the index-

aware merge step in practice decreases the merge performance
(in terms of CPU cycles) by up to a factor of 3 for columns



with rather high distinct value counts.
Evaluating the Cycles-per-Instruction (CPI) ratio reveals,

that the current implementation does not achieve small CPI
values for high distinct value counts, likely because the dic-
tionary merge step can not benefit as much from out-of-order
processing and other CPU features as the monotonous at-
tribute vector update, and the sequential access to the index
structures.
However, augmenting the merge process is always faster

than rebuilding the index after every merge process.

8. CONCLUSION
Indices can decrease runtime memory demands signifi-

cantly. In fact, scanning the whole column to answer queries
with a low selectivity leads to excessive waste of memory
transfer capacity and processing power.
The index comes at a price, not only does it increase the

memory footprint of the column significantly, but it also
increases the maintenance costs for the column, when the
index has to be updated.
While earlier research [7] stated, that the index should

simply be rebuild for analytical systems, we showed that this
is not optimal. Since the merge process is crucial for the
performance of in-memory column stores [5], we showed how
the cost of index maintenance can be reduced by combin-
ing the index rebuild with the column merge process and
the reuse of the former index. We showed the advantages
with a theoretical view of the involved memory traffic and
verified the findings with an experimental implementation.
The proposed augmented column merge in our prototype
implementation is on average about 30 percent faster than
rebuilding the index after the column merge.

9. FUTURE WORK
Currently we assume that there are more columns to be

merged than processors available, however this might not
hold true in the future. As outlined in [1], future chip
designs may feature thousands of cores, and therefore intra-
column parallelization would become necessary to make use
of many more cores. The same logic applies to the main
memory subsystem - we introduced the index maintenance
in a NUMA- agnostic manner in this paper, but if the main
memory bandwidth is the limiting factor, the placement of
data structures on different NUMA nodes may increase the
performance by utilizing all memory channels in parallel.
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