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ABSTRACT

Modern graphics cards bundle high-bandwidth memory with
a massively parallel processor, making them an interest-
ing platform for running data-intensive operations. Conse-
quently, several authors have discussed accelerating database
operators using graphics cards, often demonstrating promis-
ing speed-ups. However, due to limitations stemming from
limited device memory and expensive data transfer, GPU-
accelerated databases remain a niche technology.

We suggest a novel approach: Using the graphics card as
a co-processor during query optimization. Query optimiza-
tion is a compute-heavy operation that requires only min-
imal data transfer, making it a well-suited target for GPU
offloading. Since existing optimizers are typically very effi-
cient, we do not suggest to simply accelerate them. Instead,
we propose to use the additional resources to leverage more
computationally involved optimization methods. This ap-
proach indirectly accelerates a database by generating bet-
ter plan quality.

As a first step towards GPU-assisted query optimization,
we present a proof-of-concept that uses the graphics card
as a statistical co-processor during selectivity estimation.
We integrated this GPU-accelerated estimator into the op-
timizer of PostgreSQL. Based on this proof-of-concept, we
demonstrate that a GPU can be efficiently used to improve
the quality of selectivity estimates in a relational database
system.

1. INTRODUCTION

In recent years, graphics processing units (GPUs) ma-
tured to fully programmable, highly-parallel co-processors.
Modern graphics cards contain up to a few thousand sim-
ple, programmable compute cores paired with a few giga-
bytes of high-bandwidth memory. Several frameworks - like
OpenCL, CUDA and DirectCompute - allow for harness-
ing this massive performance to accelerate general-purpose
computations. The usage of graphics cards to accelerate
operations in relational database systems has already been
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extensively studied, often demonstrating promising results.
Nevertheless, it remains a niche technology due to severe
limitations stemming from limited device memory and large
data transfer costs.

We suggest an orthogonal approach towards using graph-
ics cards in a database system: Running query optimization
on the GPU. Query optimization is typically compute-bound
and requires only minimal data transfer, making it a well-
suited target for GPU offloading. Since optimization time
is in most cases insignificant compared to the actual query
runtime, simply accelerating the optimizer is of little use.
Instead, we propose to use the additional compute power of
a graphics card to run more involved optimization routines,
leading to better plan choices. In essence, this approach in-
directly accelerates the database without running operator
code on the GPU.

To the best of our knowledge, there is no prior work on
using a graphics card during query optimization: All prior
research papers focused on using graphics cards to acceler-
ate common database operations. This covers efficient al-
gorithms for sorting [13, 11, 6, 25], hashing [3, 9], indexing
[19], compression [8], selections [29, 12], joins [16] and trans-
actions [17]. Most of these papers report promising results,
often demonstrating speed-ups of an order of magnitude.
However, research has also shown that several open chal-
lenges - including GPU-aware query optimization and data
placement strategies - remain to be addressed [22]. Our ap-
proach avoids these issues and could even help to solve some
of them.

We make the following contributions in this paper:

1. We motivate using a graphics card to improve the re-
sults of query optimization in a relational database.

2. As a proof-of-concept, we investigate using the graph-
ics card as a statistical co-processor during selectivity
estimation. In particular, we use the GPU to quickly
compute highly accurate estimates of base-table query
cardinalities.

3. We provide an implementation of our proof-of-concept,
integrating a GPU-assisted selectivity estimator for
real-valued range queries based on Kernel Density Es-
timation into PostgreSQL.

4. We evaluate our estimator, demonstrating that using
a GPU can improve estimation quality, in particular
for multidimensional data.

The remainder of this paper is structured as follows: In
the next section, we give a quick introduction into the archi-



tecture of modern graphics cards and the specifics of general
purpose programming on a GPU (GPGPU). In Section 3, we
observe some open challenges and motivate using the graph-
ics card during query optimization. Section 4 introduces our
proof-of-concept and motivates our design choices. In the
following section, we discuss implementation details of the
system, including how the estimator has been parallelized
and how it has been integrated into PostgreSQL. In Section
6, we present an evaluation of the estimator, demonstrating
that using the GPU can improve estimation quality. Fi-
nally, Section 7 concludes the paper by discussing possible
directions for future work on this topic.

2. PRELIMINARIES
2.1 Graphics Card Architecture

Figure 1 showcases' the architecture of a modern com-
puter system with a graphics card. The graphics card -
henceforth also called the device - is connected to the host
system via the PCIEzpress bus. All data transfer between
host and device has to pass through this comparably low-
bandwidth bus.

The graphics card contains the graphics processing unit
(GPU) and a few? gigabytes of device memory. Typically®,
host and device do not share the same address space, mean-
ing that neither the GPU can directly access the main mem-
ory nor the CPU can directly access the device memory.

The GPU itself consists of a few multiprocessors, which
can be seen as very wide SIMD processing elements. Each
multiprocessor packages several scalar processors with a few
kilobytes of high-bandwidth, on-chip shared memory and an
interface to the device memory.

2.2 Programming a GPU

Programs that run on a graphics card are written in the
so-called kernel programming model. Programs in this model
consist of host code and kernels. The host code manages the
graphics card, initializing data transfer and scheduling pro-
gram execution on the device. A kernel is a simplistic pro-
gram that forms the basic unit of parallelism in the kernel
programming model. Kernels are scheduled concurrently on
several scalar processors in a SIMD fashion: Each kernel in-
vocation - henceforth called thread - executes the same code
on its own share of the input. All threads that run on the
same multiprocessor are logically grouped into a workgroup.

One of the most important performance factors in GPU
programming is to avoid data transfer between host and de-
vice: All data has to pass across the PClexpress bus, which
is the bottleneck of the architecture. Data transfer to the
device might therefore eat up all time savings from running
a problem on the GPU. This becomes especially evident for
1/0-bound algorithms: Since accessing the main memory is
roughly three times faster than sending data across the PCI-

'The figure shows the architecture of a graphics card from
the Fermi architecture of NVIDIA. While specific details
might be different for other vendors, the general concepts
are found in all modern graphic cards.

2Typically around 2GB on mainstream cards and up to 8GB
on high-end devices.

3Beginning with version 4.0, NVIDIA’s CUDA framework
introduced unified virtual addressing, which tackles this
problem. However, this is only a virtual technique aimed
at simplifying programming.
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Figure 1: Overview: Exemplary architecture of a
system with a graphics card.

express bus, the CPU will have finished execution before the
data even arrived on the device.

Graphics cards achieve high performance through massive
parallelism. This means, that a problem should be easy to
parallelize to gain most from running on the GPU. Another
performance pitfall in GPU programming is caused by diver-
gent code paths. Since each multiprocessor only has a single
instruction decoder, all scalar processors execute the same
instruction at a time. If some threads in a workgroup di-
verge, for example due to data-dependent conditionals, the
multiprocessor has to serialize the code paths, leading to
performance losses. As a general rule, it is therefore recom-
mended to avoid control structures in kernels where possible
[7].

3. RUNNING QUERY OPTIMIZATION ON
THE GPU

3.1 Challenges in GPU-accelerated Databases

Graphics cards bundle high-bandwidth memory with a
massively parallel processor, making them an interesting
target for running data-intensive operations. Consequently,
there are several papers on accelerating common database
operations, often demonstrating promising speed-ups [22].
Nevertheless, there are challenges that remain to be ad-
dressed before GPUs can be reasonably used in databases:

e GPU-accelerated databases try to keep relational data
cached on the device to avoid data transfer. Since
device memory is limited, this is often only possible
for a subset of the data. Deciding which part of the
data should be offloaded to the GPU - finding a so
called data placement strategy - is a difficult problem
that currently remains unsolved.

e Due to result transfer costs, operators that generate
a large result set are often unfit for GPU-offloading.
Since the result size of an operation is typically not



known before execution, predicting whether a given
operator will benefit from the GPU is a hard problem.

e GPU-accelerated operators are of little use for disk-
based database systems, where most time is spent on
disk I/0. Since the GPU improves performance only
once the data is in main memory, time savings will be
small compared to the total query runtime. Further-
more, disk-resident databases are typically very large,
making it harder to find an optimal data placement
strategy.

e Having the option of running operations on a GPU
increases the complexity of query optimization: The
plan search space is drastically larger and a cost func-
tion that compares runtimes across architectures is re-
quired. While there has been some prior work in this
direction [15], GPU-aware query optimization remains
an open challenge.

3.2 GPU-assisted Query Optimization

The query optimizer of a relational database system gen-
erates an execution plan from a query. It picks the plan with
lowest estimated cost from the exponentially large space of
possible plans for the query. During optimization, multiple
candidate plans are generated and cost functions are evalu-
ated on these candidates. Query optimization performs sev-
eral computations on a comparably small input, generating
a small result set. Conceptually, this makes it an interesting
problem for GPU offloading.

Based on this observation, we propose to investigate meth-
ods for running query optimization on the graphics card.
We want to stress that it is not our intention to simply ac-
celerate query optimization: It is already a very efficient
procedure and only highly complex queries result in signif-
icant optimization overhead. Instead, our focus is on using
the additional resources of the GPU to improve the quality
of generated plans. This allows us to indirectly accelerate
a database system using a GPU while avoiding the issues
outlined in the previous section.

One research challenge for GPU-assisted query optimiza-
tion is to identify components of the optimizer that trade
off result quality with computational effort and that are
easily parallelized. Such components are prime candidates
for offloading to the GPU, using the additional resources
to improve quality. Some possible directions are reducing
the number of heuristics that prune the search space, using
more accurate - but also more expensive - cost functions,
and throwing more resources at selectivity estimation to get
better estimates.

We would like to stress that our approach is independent
of GPU-assisted database operations. Naturally, a DBMS
not assisted by GPUs for query processing can still use the
graphics card as a co-processor to improve query optimiza-
tion tasks, as we will showcase in the next section. How-
ever, one can also complement GPU-assisted query process-
ing with query optimization on the GPU. In particular, the
GPU can be used to handle the additional optimization com-
plexity from using GPU-accelerated operators. We believe
that both approaches are important and that they can ulti-
mately complement each other.

As a final point, we would like to note that - in contrast
to GPU-accelerated database operators -, our approach also
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Figure 2: Scaling the accuracy of a histogram by
increasing model complexity.

applies to disk-basked systems: Since we aim at providing
higher plan quality, we can indirectly accelerate any DBMS,
irregardless of its data access strategies.

4. A GPU-ASSISTED SELECTIVITY ESTI-
MATOR

There are many ways how query optimization can benefit
from GPUs, from query rewriting to plan enumeration, cost-
ing and selection. In the following, we describe, as a first
step towards a GPU-assisted query optimizer, a selectivity
estimation component that is assisted by a GPU. Using the
massive compute power of GPUs, this component can lever-
age methods that current CPU-based query optimizers do
not exploit due to computational complexity and cost.

4.1 The Graphics Card as a Statistical Co-
Processor

In order to estimate the cost of candidate plans, the query
optimizer needs to know the result sizes of intermediate op-
erations. These sizes are estimated in a process called selec-
tivity estimation, which uses data statistics to approximate
the fraction of qualifying tuples for an operator. The quality
of the selectivity estimates has a direct impact on the plan
choice, since modern query optimizers typically react very
sensitively to estimation changes [24]. Furthermore, it has
been shown that incorrect selectivity estimates - in partic-
ular for multi-dimensional queries - are often the cause for
bad query performance [21].

Selectivity estimation is a good example for a component
that trades quality for computational effort: The estimation
quality can be improved almost* arbitrarily by refining the
data statistics, however, this also leads to more expensive
estimates. Figure 2 illustrates this relationship for an equi-
width histogram. By increasing the number of bins, we can
get arbitrarily close to the true distribution. However, at
the same time, computing an estimate gets more expensive,
since we have to touch a larger number of bins.

As a proof-of-concept, we will demonstrate how a GPU
can be used to improve the accuracy of selectivity estimation

4Statistics are typically built from an incomplete sample.
With increasing refinement, we eventually overfit to the sam-
ple, leading to a loss in estimation quality.
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Figure 4: Kernel Density Estimate based on five
sample points drawn from a normal distribution.

- and thus indirectly plan quality. The idea behind this is
straightforward: We use the additional computational power
of the GPU to run selectivity estimation on a more detailed
model, resulting in better estimates. Figure 3 illustrates this
idea: We use the graphics card as a statistical co-processor
during selectivity estimation: A statistical model is stored
on the device and used by the GPU to estimate query result
sizes.

4.2 GPU-assisted Kernel Density Estimation

We have selected Kernel Density Estimation (KDE) as
the estimator for our proof of concept. KDE is a non-
parametric, data-driven technique for estimating a proba-
bility distribution from a data sample [1]. The method uses
the sample as supporting points for the estimated distribu-
tion: Each sample point distributes some probability mass
to its neighborhood. Mathematically, this is achieved by
centering local probability distributions - so-called kernels
- around the sample points. The estimated distribution is
then computed as the normalized sum of all local distribu-
tions. Consequently, KDE assigns high probability to points
that lie in the vicinity of sample points. Figure 4 visualizes
KDE using a sample of five points drawn from a normal dis-
tribution. A more in-depth description of KDE can be found
in Appendix Section A or in the corresponding literature [1,
28, 4].

KDE has several advantages over more traditional estima-
tion techniques like histograms and frequent value statistics:

e From a statistical perspective, it has been shown that
KDE converges faster to the true underlying distribu-
tion than histograms [1]. Thus, when using the same
sample size, KDE - in general - generates a smaller
estimation error than a histogram.

e One of the major sources of estimation errors in rela-
tional databases are incorrect independence assump-
tions for multidimensional data [5]. There are several
techniques for multi-dimensional histograms that solve
this problem [14, 5]. However, they are typically com-
plex and costly to construct. KDE on the other hand
naturally extends to multidimensional data: Aslong as
the sample is representative, high probability will au-
tomatically be assigned to those areas with high data
density.

e A KDE model can be easily maintained under chang-
ing datasets. While histograms have to be recomputed
in regular intervals, KDE can be maintained incremen-
tally by updating the data sample to stay representa-
tive. This is a well-understood problem in database
research, and several solutions exist [10].

Given its many advantages, KDE has often been suggested
as a selectivity estimation method in databases [4, 14]. How-
ever, there is a major roadblock, limiting the utility of KDE:
Since the complete sample has to be evaluated for each es-
timation, KDE is a very expensive operation. This is par-
ticularly bad during selectivity estimation, which operates
on a tight time budget. This forcefully limits KDE to use
comparably small sample sizes for selectivity estimation.

We have chosen KDE for our proof-of-concept since it nat-
urally demonstrates how additional compute power can im-
prove estimation quality. KDE can be parallelized very ef-
ficiently, making it well suited for GPU-accelerating. This
allows us to use a much larger data sample on the graphics
card, which in turn leads to improved estimation quality.

S. IMPLEMENTATION DETAILS

Our implementation integrates a GPU-accelerated version
of Kernel Density Estimation for real-valued range queries
into the query optimizer of PostgreSQL. The estimator is
written against the 1.1 specification® of OpenCL - an open
standard of the kernel programming model. We use the
latest stable release 9.1.3 of PostgreSQL.

We have chosen PostgreSQL as our host system for two
reasons: First, it is open-source and well-documented, mak-
ing it easy to integrate our code. Second, it is a disk-based
system, allowing us to demonstrate that our approach makes
it feasible to accelerate a disk-based database using a graph-
ics card. The choice for OpenCL was mainly made, since it
is supported by all major vendors, making our implementa-
tion vendor-independent. Furthermore, OpenCL allows us
to target other devices than graphics cards, including multi-
core processors and FPGAs.

The source code for our implementation can be found at:
https://bitbucket.org/mheimel/gpukde/.

Swww.khronos.org/registry/cl/specs/opencl-1.1.pdf
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5.1 Running KDE on a GPU
5.1.1 Parallelizing KDE

Computing a range selectivity in KDE requires integrating
over the approximated probability distribution. Recall that
KDE defines its estimate as the sum over local distributions.
Since integration is a linear operator, we can evaluate the
integral for each sample point independently and then sum
up these local contributions. For a more in-depth description
of this approach, refer to Appendix Section B.

Computing the local contributions is an embarrassingly
parallel operation that can be implemented using a single
kernel: Each thread evaluates the integral for one sample
point, writing the result to device memory. Afterwards, we
use a binary reduction strategy® to efficiently aggregate the
local contributions in parallel. Figure 5 visualizes this strat-

egy.
5.1.2  Dynamic Kernel Compilation

Computing the local contribution for a d-dimensional data
point requires to evaluate all d dimensions’. The number of
dimensions is unknown while writing the kernel, so we could
pass the number as a runtime parameter and use a loop for
the computation. However, since control logic in kernels
typically leads to a performance penalty on the GPU [7], we
want to avoid this strategy.

We use dynamic kernel compilation to achieve this goal.
In dynamic kernel compilation, we generate and compile ker-
nel code at runtime that exactly matches the problem. In
OpenCL, this can for example be achieved by using C pre-
processor statements: Once we know the number of dimen-
sions, we pass it as a preprocessor constant to the kernel
compiler. This enables the compiler to eliminate the loop
via loop unrolling.

We also use dynamic kernel compilation to implement
device-specific optimizations. In particular, we introduce
the type of device (CPU or GPU) into the kernel as a prepro-
cessor constant and, for instance, pick the optimal memory
access pattern based on this constant.

SFor details, refer to: http://people.maths.ox.ac.uk/
gilesm/cuda/prac4/reduction.pdf

"See equation (16) in Appendix Section B for the corre-
sponding equation.

5.1.3 Picking the Sample Size

The mean integrated square estimation error (MISE) of
KDE converges with the sample size n as O (n_%> [1]. This

means that the estimation error gets smaller when we in-
crease the sample size. In other words, we should pick the
largest sample size that is possible.

There are two factors that limit the possible sample size.
First, query optimization - and in particular selectivity es-
timation - is typically operating on a tight time budget. If
the sample size is chosen too large, the estimator will sim-
ply take too long. The second limiting factor is the size of
the available device memory. Based on our observations,
the first factor is irrelevant for graphics cards: Even for the
largest possible sample size, the graphics card will take less
than 25 milliseconds to compute a density estimate. We
thus pick our sample size solely based on the available de-
vice memory®. For practical reasons, we use an upper bound
of 512MB for the sample size, as this is the largest possible
size of a singular memory allocation on the NVIDIA graph-
ics card we used for development.

5.1.4 Exact Evaluation

For a small relation, it is possible to copy the complete
relation into device memory. In this case, there is no unseen
data to which we need to generalize in selectivity estimation:
The additional smoothing induced by KDE would lead to
incorrect results. Therefore, for small relations, we fall back
to exactly counting how many tuples qualify the given query.

The parallelization strategy is almost identical to KDE:
We schedule a kernel on all data points that writes one to
device memory if the point qualifies and zero otherwise. Af-
terwards, we recursively aggregate all these local contribu-
tions to get the exact count of qualifying tuples.

5.2 Integration into PostgreSQL

The integration of our KDE estimator into PostgreSQL
requires three major components: OpenCL context manage-
ment, model management and selectivity estimation. We
will now briefly discuss these components.

5.2.1 OpenCL Context Management

The context management initializes the OpenCL runtime
and manages access to the OpenCL APIs. It also handles
the dynamic compilation of kernels: Kernels are indexed in
a kernel library using the injected preprocessor constants as
key. This way, we can avoid recompiling kernels that we have
already built. When the first request arrives, the context
management initializes all required resources and directory
structures. To simplify switching between devices, we added
a boolean configuration variable ocl_use_gpu to PostgreSQL.
The value of this variable is used during initialization to
decide whether OpenCL is initialized for CPU or GPU.

5.2.2 Model Management

The model management handles all things related to cre-
ating and registering statistical models. We inserted some
code into PostgreSQL’s ANALYZE command, which is used
to trigger statistics collection on a table. When ANALYZE
is called for a table, our code checks the table definition for

8Taking into account that we want to store samples for mul-
tiple tables and that we need some memory on the device
to store the local contributions during estimation.



real-valued attributes. If any are found, a new KDE model
is automatically created for them. This happens in three
steps: First, we collect a random sample of the selected at-
tributes using PostgreSQL’s internal sampling routines and
transfer it to the device memory. Before shipping the data,
we re-scale each attribute to unit variance to achieve better
numerical stability [1]. Afterwards, the required kernels are
dynamically compiled to match the number of attributes.
Finally, we generate a model descriptor and register it within
a global registry. The descriptor contains information iden-
tifying the scope of the model (table id and attributes) as
well as the location of the sample on the device and handles
for the estimation kernels.

5.2.3  Selectivity Estimation

Selectivity estimation is triggered by code within the query
optimizer of PostgreSQL. When a query arrives, the opti-
mizer calls the function clauselist_selectivity to compute
the joint selectivity of all predicates defined on a single
base table. Our code checks whether a KDE model ex-
ists for the given table. If we find a matching model, all
range-predicates on real-valued attributes are extracted and
handed over to the KDE estimator. The estimator then
configures the kernels with the query parameters and starts
the estimation. Finally, we pass the computed selectivity
back to clauselist_selectivity . PostgreSQL then estimates
the selectivity of the remaining predicates using histograms,
computing the final result as the product of all estimates.

6. EVALUATION

6.1 Experimental setup

All experiments were run on a custom-built server with
the following specifications:

e Intel Xeon E5620, 64-bit, four cores running at 2.4GHz,
12MB Cache.

e 32GB of DDR-3 RAM, clocked at 1333MHz.

The server is equipped with a middle-class NVIDIA GTX460
graphics card, sitting in a PClexpress 2.1 x16 slot. The
graphics card has the following specifications:

e NVIDIA Fermi GF104 core:

— Seven multiprocessors, each having 48 compute
units.

— 48KB of local device memory, 64KB of constant
buffer per compute unit.

e 2GB of DDR4 graphics memory, clocked at 1800MHz.

The experiments were conducted on a 64-bit Scientific Linux
6.2 (Linux kernel 2.6.32-220.7.1.e16.x86_64). The graphics
card was controlled with the NVIDIA 295.33 driver for 64-
bit Linux systems. All timings were measured using the
POSIX function gettimeofday(), which has a precision of
one ms.

6.2 Performance Evaluation

In this section, we analyze the performance characteris-
tics of our estimator. In particular, we are interested in
the scaling behaviour with increasing data volume and di-
mensionality, the benefit from evaluating queries on small
relations exactly, and the performance boost we get from
the GPU.
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Figure 6: Evaluation: Runtime comparions between
GPU and CPU.

6.2.1 Perfomance Impact of the GPU

In our first experiment, we investigate how GPU and CPU
compare when estimating a selectivity using KDE. For this
comparison, we used Intel’s OpenCL SDK 1.5, which auto-
matically generates vectorized multi-core code. We believe
that this is a reasonable approach, given that on modern
multi-core processors, OpenCL typically achieves compara-
ble performance to more traditional techniques like OpenMP
[26]. The experiment was run on a synthetic, 800MB dataset
of uniformly distributed four-dimensional data points. We
ran random, non-empty range queries against this dataset,
measuring the average runtime of ten queries on both CPU
and GPU. The experiment was repeated multiple times us-
ing different sample sizes, allowing us to measure how the
estimation time behaves with increasing input size. Figure
6 shows the resulting measurements.

There are a few notable observations: First, the GPU is
about an order of magnitude faster than the CPU. On the
largest sample size - which is roughly 460MB - the CPU
took 270ms, while the GPU took 22ms. Second, the esti-
mator scales linearly with input size. This is the expected
behaviour, given that the majority of the work is done while
computing the local contributions from all sample points.

Note that the experiment shows that the GPU can pro-
duce an estimate roughly 12 times faster than the CPU.
Since scaling behaviour is linear, this means that given a
fixed time budget, the GPU can use a sample that is 12
times larger than what is possible on the CPU. In KDE,
the estimation error converges with the sample size n as

0O (nié). Thus, the GPU can generate estimates that are

roughly 125 ~ 7.3 times more accurate!

6.2.2 Scaling with Dimensionality

In our second experiment, we examine the scaling be-
haviour of the estimator with increasing dimensionality. For
this, we generated random 500MB datasets of uniformly
distributed data points with increasing dimensionality. We
then measured the average estimation time for five random,
non-empty queries on each data set. Figure 7 shows the
resulting measurements.

The measurements show a clear minimum in the estima-
tion time for three-dimensional data, with one- and six-
dimensional data taking the longest. We can explain this
by observing that, since we kept the data volume constant,
we have twice as many one-dimensional data points than
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two-dimensional ones. Consequently, in the one-dimensional
case, twice as many local contributions have to be written
to device memory, explaining the higher cost. The increase
for higher-dimensional data is likely caused by suboptimal
memory access patterns on the GPU. Nevertheless, the ex-
periment still demonstrates that the dimensionality of the
data has a much smaller impact on performance than the
sample size.

6.2.3 Impact of Exact Evaluation

In the final experiment, we investigate the impact on per-
formance when using exact query evaluation on small rela-
tions that fit into device memory. We generated datasets
of increasing size, consisting of uniformly distributed, four-
dimensional data points. Since we fixed the maximum sam-
ple size to be 500MB, all datasets smaller than this were
evaluated exactly. We then measured the average estima-
tion time of ten random, non-empty range queries against
our dataset. Figure 8 shows the resulting measurements.

We can clearly see a sharp increase in runtime for datasets
that are larger than 500MB. This increase is the switch-over
from exact evaluation to KDE, meaning that exact eval-
uation is roughly 1.5-times faster than KDE. This is not
surprising, given that KDE performs more complex calcu-
lations on each sampling point, incurring higher computa-
tional cost. Since exact evaluation gives perfect estimates,
and is faster than KDE, we conclude that it is a very good
mechanism, given the relation fits into device memory.

6.3 Estimation Quality

In this section, we analyze the estimation quality of our es-
timator. In particular, we investigate how the quality scales
with the sample size and the amount of correlation in the
data. Also, we compare how our implementation compares
against the histogram-based selectivity estimator of Post-
greSQL. This comparison is done using both synthetic and
real-world datasets. We focus on multidimensional data,
given that for single-dimensional data, the histogram ap-
proach of PostgreSQL is already sufficient in most cases [5,
14].

Note that we do not perform a full evaluation of KDE
against other estimation techniques: Our goal in this paper
is to demonstrate that the GPU can be used to improve es-
timation quality, not to discuss performance characteristics
of KDE. Extensive evaluations of KDE as a selectivity esti-
mation technique can be found - for instance - in [14] and
[4]. We also won’t evaluate the impact of improved selec-
tivity estimates on plan quality. For such experiments and
discussions, the reader is referred to existing publications,
in particular [23] and [21].

There is one caveat that we want to point out before dis-
cussing the results. In its current form, our estimator does
not use the “full potential” of KDE. The estimation quality
of KDE is determined by the choice of the so-called band-
width [1], which governs the width of the local probability
densities®. Picking the optimal bandwidth is a difficult task,
and multiple algorithms exist for it [18]. In our implementa-
tion, we follow the approach from [14] and use a quick rule-
of-thumb formula. While this approach gives a solid first
approximation, it is almost always sub-optimal [1]. Conse-
quently, estimation quality could be notably improved by
using one of the more involved bandwidth selection algo-
rithms.

6.3.1 Impact of Sample Size

In the first experiment, we evaluate the impact of the
sample size on estimation quality and demonstrate how our
estimator compares on real-world data against PostgreSQL.
For the experiment, we use the forest covertype dataset
from the UCI Machine Learning Repository'®, a real-world,
multi-dimensional dataset that features non-trivial correla-
tions and complex data distributions. The dataset consists
of 580,000 data points, with 54 attributes - out of which ten
are numeric. For practical reasons, we restricted ourselvs
to six of the ten numerical attributes and re-scaled them to
the [0, 1]-interval. We then generated a workload consist-
ing of 5,000 random, non-empty range queries against the
dataset. The workload was run once on vanilla PostgreSQL
and multiple times on our modified version, with each run
using a different sample size. Figure 9 shows the results of
this experiment.

The measurements confirm the expected behaviour: The
estimation error quickly decreases with increasing sample
size. This observation is in accordance with the expected

(0] (nfg) error convergence rate. The sharp drop in the

estimation error, for a sample size of around 600,000 data
points is caused by the estimator switching to exact evalua-
tion.

9See Figure 11 in Appendix Section A for a visualization of
how the bandwidth choice impacts estimation quality.
Ohttp://archive.ics.uci.edu/ml/datasets/Covertype
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Note that even for small sample sizes - around a few thou-
sand data points - we vastly outperform PostgreSQL on this
dataset. This is not surprising, given that the dataset is
multidimensional and features non-trivial correlation pat-
terns. PostgreSQL will incorrectly assume independence be-
tween the attributes, when combining estimates from mul-
tiple single-dimensional histograms. Our KDE estimator on
the other hand, directly models the joint distribution, thus
avoiding incorrect independence assumptions.

6.3.2 Impact of Correlation

In the second experiment, we analyze the impact of corre-
lated data on the estimation quality and demonstrate how
our estimator compares to PostgreSQL on synthetic data.
For the experiment, we generated multiple random, two-
dimensional datasets with increasing correlation between the
two attributes. We then ran 500 non-empty, random range
queries against this dataset, measuring the average relative
estimation error. The experiment was run both on vanilla
PostgreSQL and our modified version. For our estimator,
we used roughly one third of the data as sample. This size
was chosen, since it resulted in the same estimation time
- roughly one ms - that vanilla PostgreSQL required using
histograms. Figure 10 shows the results of this experiment.

The measurements confirm the result of the previous ex-
periment: In case of correlated data, KDE outperforms Post-
greSQL by a huge margin. While the estimation quality
of PostgreSQL degrades quickly with increasing correlation,
the quality of our estimator remains practically constant.

An interesting observation is, that PostgreSQL outperforms
our estimator for the case of independent attributes. How-
ever, it is likely that, when making a better bandwidth pa-
rameter choice, our estimator would achieve similar perfor-
mance.

7. OUTLOOK

This paper motivates the idea of using a graphics card dur-
ing query optimization. The additional compute power of a
GPU can help to improve plan quality, eventually accelerat-
ing the database system. We demonstrate the usefulness of
this approach via a concrete example: Using a GPU for se-
lectivity estimation. We integrated a GPU-accelerated ver-
sion of Kernel Density Estimation into PostgreSQL, demon-
strating a clear improvement in estimation quality. We will
now discuss some possibilities for future work:

A possible next step is to continue investigating ways how
to use a graphics card during query optimization. A first
step could include identifying expensive, compute-intensive
parts of the optimization pipeline that are easily parallelized.
In a second step, these parts could then be ported to the
GPU and replaced by more expensive methods that improve
plan quality. A possible first approach could use existing
work on running dynamic programming on a GPU [27] to
accelerate join order optimization. It would also be interest-
ing to revisit topics from query optimization literature and
evaluate them with regard to search space restrictions that
could be relaxed when more processing power is available.

Another possible direction is to improve upon the pre-
sented GPU-accelerated selectivity estimator. In particular,
it would be interesting to see whether other multidimen-
sional estimation techniques - for example GenHist [14] -
could also benefit from running on a GPU. Future work
could also focus on extending the KDE estimator to cat-
egorical attributes, an extension that would be required to
make the estimator useful in a “real-world” database setting.
This could build on existing work that deals with extend-
ing KDE to discrete [2] and categorical data [20]. Another
possible direction is to investigate how to improve the esti-
mation quality of the KDE estimator. In particular, it would
be interesting to investigate existing bandwidth-selection al-
gorithms [18] and identify whether they could be efficiently
run on the GPU.

A final possible direction for future work is to investigate
how GPU-assisted query optimization could be used to han-
dle the additional optimization complexity that stems from
GPU-accelerated operators. This could help to resolve some
of the issues that currently prevent GPUs from being succes-
fully used in real-world settings. Eventually, this research
could merge the two approaches of using graphics cards in a
database, with both technologies complementing each other.
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APPENDIX
A. KERNEL DENSITY ESTIMATION

This section serves as a quick introduction into Kernel
Density Estimation (KDE), a non-parametric technique for
estimating probability densities from a sample. This intro-
duction is based on multiple publications from statistics that
describe KDE in more detail [1, 28, 18].

KDE defines an estimator p (7) for the underlying prob-
ability distribution p (Z) of a sample of data points. We
assume the sample Y(l), e 7)€ R? was drawn indepen-
dently and identically distributed (iid) from p (7).

A.1 Estimating the Density at a Point

Equation (1) shows the base formula for KDE, defining
the density estimate p () at a given data point Z € R [28]:

- %;KH (i’

The density estimate for a point Z is computed as the aver-
aged likelihood from n local probability densities which are
centered at the sample points. In KDE, all local probability
densities have the same shape and orientation. They are
defined by the function Kp : R — R:

_ C—C’(i)) (1)

Ku (2) = —K (H ') (2)

There are two components in equation (2), that have to be

picked: The bandwidth matriz H and the kernel function

K (Z).

Kernel function The function K : RY — R defines the
shape of the local probability density functions. Any
function that defines a symmetric probability density*!
is a valid choice for K. A typical choice is the Gaussian
kernel, which centers a normal probability distribution
around each sample:

Ko () = (2m) % exp (-%?T?a) 3)

A different possible choice is the Epanechnikov kernel,
which uses a truncated quadratic function as the local
distribution:

Kg(2)= (i)d‘ﬁ(l—x ) Ljzy <1 (4)

i=1

Here 1, is the indicator function, which takes the value
one if the predicate p holds and zero otherwise. [1]

Bandwidth matrix The bandwidth matrix H € R¢*? de-
termines the strength and orientation of the local den-
sity function. In order to be a valid bandwidth-matrix,
H has to be symmetric and positive definite.

The actual choice of kernel function K does not play a sub-
stantial role in the estimation quality of KDE [1]. Therefore,
it is common practice to choose a kernel function that simpli-
fies computation or derivation. The choice of the bandwidth

1 This means that the function K has to observe the follow-
ing two propertieS'
1 [pa K(Z)dZ =1

2. VxeRd.K(a?):K(—f)
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Figure 11: Impact of the bandwidth on estimation
quality.

matrix H on the other hand is crucial to the estimation qual-
ity [18]. If H is chosen “too small”, the estimator won’t be
smoothed enough, resulting in a very spiky estimator that
overfits the sample. On the other hand, if H is chosen “too
large”, the estimator will be smoothed to strongly, losing
much of the local information and underfitting the distribu-
tion. Figure 11 demonstrates the influence of the choice of
bandwidth on the estimation quality of KDE.

A.2 Density Estimation for a Region

KDE can also be used to compute the probability mass
p (Q) that is enclosed in a region Q C R?. Mathematically,
this amounts to integrating (1) over all points within the

region:
[ p(@)az
Q N~~~

(1)
1 - — —(3)
- E Ky (w - T ) (5)
s/

We can give a simple closed-form expression of (5) under
the following two assumptions:

p (%)

1. We assume that ) is a hyperrectangle, i.e., it is the
Cartesian product of intervals within the d dimensions:
Q= [ll,ul] X ... X [ld,ud] C Rd.

2. We assume that H is a diagonal matrix, such that H =
diag (h1, ..., hn).

Under those assumptions, we can show'? that (5) can be
expressed for the Epanechnikov kernel as:

s 43 ]11’<u

NI

i=1j=1
) 13 _ '3 )
{(h? —a7) (o~ 1)~ T ) (i z;?)} ©)

In this formula, the region boundaries of {2 were adjusted to
the support of the local density around the sample points.

The adjusted boundaries are: I = max (lﬁxg’) hj) and
w5 = min (xgl) + hj,uj).

12For the derivation, refer to Appendix Section B.




A.3 Bandwidth Selection

Selecting the optimal bandwidth is the most important
parameter choice for a KDE estimator [18]. The band-
width is typically chosen to minimize some error measure. In
statistics literature, the most commonly chosen error metric
is the Mean Integrated Square Error (MISE). Since comput-
ing the MISE requires knowledge of the exact underlying
distribution, it is custom to use techniques that approxi-
mate MISE from the data sample. These approximations
give rise to typical bandwidth selection algorithms like cross-
validation and plug-in methods [18].

A solid first approximation for the bandwidth hi in di-
mension ¢ can be computed by assuming that the underlying
probability distribution is normal. Under this assumption,
it has been shown [1] that the optimal bandwidth for the
Epanechnikov kernel is given by:

Bi=+/5-n" a1 .6, (7)

B. DERIVATION OF THE INTEGRATION
FORMULA

In this section, we derive a closed-form expression for the
KDE range estimator. The derivation is adapted from the
ones found in [4, 14]. We begin with the definition of the
range estimator in equation (5):

1< ;
s

We can further expand this definition, by plugging in the
definition of Ky from equation (2), giving us the following:

p(Q) = s-THI ;/QK(H‘l [z’_ f@D

=k

The term K, é; ) in equation (8) denotes the fraction of prob-
ability mass from the local density centered around sample
point :_c’(i), that lies within €2. The final estimate is the
normalized sum of the local contributions from all sample
points.

We will now derive a closed form expression for computing
the local density contributions Kg), assuming we use the
Epanechnikov kernel from (4). First, we make use of our
assumption of a hyperrectangular region Q = [l1,u1] X ... X
[la, ua] € R?, which allows us to evaluate the integral in the

definition of Kg ) from (8) for each dimension seperately:
K9 = / K (B [E;’ —70])az
/ / H ! _’—i’ ])dazd .dx1  (8)
I lg

In order to simplify the formula further, we use the following
two observations:

1. The assumption of a diagonal bandwidth matrix H =

diag (h1, ..., hq) allows us to express the matrix-vector
product within equation (8) as:
T —zgi)
h1
a [3 - 3“)] = : (9)
:cdfw{(;‘)

ha

2. The multivariate Epanechnikov kernel is - like the mul-
tivariate Gaussian kernel - a so-called product kernel,
meaning it can be expressed as a product of single-
dimensional kernels:

d
K(Z) = HK ;) (10)

Plugging both (10) and (9) back into (8), we arrive at:

) ul d
K;;>:/ / H
1 la

(1)
> dzgq...dzw  (11)

In equation (11), each of the d factors within the product
depends on exactly one of the integration variables. This
allows us to push the integration into the product, express-
ing the original d-dimensional integration as the product of
d one-dimensional integrals:

u . ()
K H/J< J)dxj (12)

We will now plug the definition of the Epanechnikov kernel
Kpg from equation (4) into equation (12). For the sake of
notational convenience, we will however only observe one of
the d single-dimensional integrals from (12).

uj . (%)
J A Tj — T;
[ e (5 -

J

/%‘3 1 xj—ac;i) ’ 1
;4 h;
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i<t
J

J

The only part in equation (13) that is not trivially inte-
grable is the indicator function. The effect of the indi-
cator is, that the integrand becomes zero for all values of
the integration variable x; that are not within the interval
[xgi) - hj,mé-i) + h]} - also called the support. This means
we can get rid of the indicator function by adjusting the
integration bounds to the support:

w; ) (©)
J Tj— T
/l. KE(hj] )dmj—

J

’
3 [
Ty cur - -
=" 4 "

J

0
1— [M] dz; (14)
h;

In equation (14), we use the modified integration bounds
I = max (lj, 2 hj) and v} = min (:c;” + hj,uj), which
are adjusted to use the intersection of integration bound
and support. Finally, we multiply the whole term by a new
indicator function to guarantee that the integral becomes
zero if the integration bound and the support are disjoint,

e., if I} > u}. The remaining integrand in (14) is now a



quadratic function that is easy to integrate:

o, ORE
J Ty — X,
1— | —21 dx;
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The antiderivative of the integrand in equation (15) is given
by the following polynomial: 7—1 +x(l> 2+ (h2 2)2) xj.

Plugging this back into equatlon (12) gives us the final in-
tegration formula for the local range density around point

R d 3-I|_l/< ’
(4) _ =Y
Kq _H 4~h§

j=1
2 ()2 up =17 e e
K3 ! / 3 / 7
{(hj - ) (w5 =) — =5+ (7 = 17) | (16)
Plugging (16) back into (8) and observing that for a diagonal
H: |H| = ngl

s, 4 3. ILz'<u

I

z1]1

hi, we arrive at the final estimation formula:
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