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ABSTRACT
The ever-growing demand for more computing power forces
hardware vendors to put an increasing number of multipro-
cessors into a single server system, which usually exhibits a
non-uniform memory access (NUMA). In-memory database
systems running on NUMA platforms face several issues
such as the increased latency and the decreased bandwidth
when accessing remote main memory. To cope with these
NUMA-related issues, NUMA-awareness has to be consid-
ered as a major design principle for the fundamental archi-
tecture of a database system.

In this paper we present ERIS, a NUMA-aware in-
memory storage engine that is based on a data-oriented ar-
chitecture. In contrast to existing approaches that focus
on transactional workloads on a disk-based DBMS, ERIS
aims at tera-scale analytical workloads that are executed
entirely in main memory. ERIS uses an adaptive partition-
ing approach that exploits the topology of the underlying
NUMA platform and significantly reduces NUMA-related
issues. We evaluate ERIS on widespread standard server
systems as well as on a system consisting of 64 multiproces-
sors and 512 cores. On these platforms, we achieve a more
than linear speedup for index lookups and scalable parallel
scan operations that are only limited by the available local
bandwidth of the multiprocessor. Moreover, we measured a
performance gain of up to 200% (index lookups) respectively
660% (column scans) in the memory-bound case compared
to a NUMA-agnostic storage subsystem.

1. INTRODUCTION
As a consequence of the high main memory capacities in

today’s servers, modern database systems are very often in
the position to store their entire data in main memory. La-
tency and bandwidth of the main memory are the major
bottlenecks of such in-memory DBMSs. The significance
of these bottlenecks increases when we consider the cur-
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Figure 1: Index Lookup and Column Scan Scalability of
ERIS on a SGI UV 2000.

rent trend towards tera-scale multiprocessor systems that
exhibit a non-uniform memory access (NUMA). On NUMA
platforms, each multiprocessor has its own local main mem-
ory that is accessible by other multiprocessors via a com-
munication network. Database systems running on NUMA
platforms face several issues such as the increased latency
and the decreased bandwidth when accessing remote main
memory. Additionally, we observe a worsening of the scal-
ability of latches and atomic instructions. This is a result
of the cache coherence maintenance overhead induced by
the NUMA system. These issues are already measurable on
wide-spread server systems consisting of four or eight mul-
tiprocessors. The demand for more parallel hardware forces
vendors to put even more multiprocessors into a single server
system (e.g., Oracle SPARC M6 with up to 96 multiproces-
sors or SGI UV2000 that are sold as HANA-Boxes). We also
expect emerging technologies like 3D DRAM/CPU stacking
to let NUMA characteristics appear in a single multipro-
cessor, where each core has its local low latency and high
bandwidth main memory [13, 18]. To allow database sys-
tems to scale-up on today’s and future platforms, NUMA-
awareness has to be considered as a major design principle
for the fundamental architecture of a database system.

Recent research revealed that a data-oriented architecture
(DORA) enables disk-based database systems to scale-up on
multicore systems in the context of transactional workloads
[19]. DORA uses a thread-to-data instead of the conven-
tional thread-to-transaction assignment and thus dramati-
cally reduces contention on lock tables as well as latch con-
tention on data objects. Since such an architecture relies



on logical partitioning, load balancing is necessary to adapt
the partitioning to workload changes. More recent works
extended the data-oriented approach by a physically parti-
tioned disk page bu�er pool [20] and a NUMA-aware as well
as workload-aware data placement algorithm, which tries to
minimize inter-socket communication [21].

In this paper we present ERIS, a NUMA-aware all-in-
memory storage engine for tera-scale analytical workloads.
ERIS is also based on a data-oriented architecture and thus
splits data objects into partitions, which are assigned exclu-
sively to individual workers. Workers are pinned on a des-
ignated core of the platform and execute data commands
(i.e., scan, lookup, or insert/upsert) on their partitions. In
contrast to existing approaches, ERIS aims at tera-scale an-
alytical workloads that are executed purely in main mem-
ory and fundamentally di�er from transactional workloads.
First, transaction-oriented systems try to cluster partitions
that belong to the same transaction class to minimize inter-
socket communication as well as interference between trans-
actions running in parallel. However, analytical queries re-
quire a high degree of parallelism to execute with low la-
tency and thus data is best spread out as much as possi-
ble. Second, analytical queries often generate huge amounts
of intermediate results and inevitably generate inter-socket
communication on NUMA systems. Hence – in opposition
to transactional workloads – the e�ective handling of inter-
mediate results, whose size grows with the size of the base
data, and the routing between workers are mission critical
components of our NUMA-aware storage engine. Third, an-
alytical workloads are usually read-only and thus the storage
subsystem should not implement comprehensive locking and
latching mechanisms, which could force a large scan opera-
tion to block. The more feasible use of a non-blocking multi-
version approach or the use of staging tables eliminates the
need to optimize for minimal lock table contention. Finally,
analytical workloads execute scans or lookups on large data
objects. Hence, a storage engine that relies on logical par-
titioning needs a topology-aware load balancing that is able
to quickly balance huge data objects with minimal impact
on the overall query throughput.

With ERIS, we address these issues by proposing a
NUMA-optimized high-throughput routing layer, that is
able to e�ciently distribute data commands over the di�er-
ent worker threads as well as to coalesce similar data com-
mands to a single storage operation (e.g., scan sharing [23]).
Additionally, we propose di�erent load balancing mecha-
nisms to move large amounts of data between workers either
on the same multiprocessor or on di�erent multiprocessors
of the NUMA system and a corresponding configurable load
balancing algorithm. In our evaluation, ERIS achieves a
more than linear speedup for index lookup throughput (1
billion keys) on a NUMA system equipped with 64 multi-
processors and a total of 512 cores as depicted in Figure 1.
Moreover, we measured a performance gain of up to 200%
(index lookups) respectively 660% (column scans) on ERIS
in the memory-bound case compared to a NUMA-agnostic
storage subsystem.

Contributions
The contributions of this paper are as follows:
(1) We give an overview of the di�erent topologies of cur-

rent NUMA server systems including a system with 64
multiprocessors (512 cores in total). We show band-

width and latency measurements for local and remote
memory accesses and describe their negative e�ect on
in-memory database systems.

(2) We describe the architecture of our NUMA-aware in-
memory storage engine ERIS, which supports three ba-
sic storage operations that are required to run analyt-
ical queries: scan, lookup, and insert/upsert. Besides
reading operations, fast writing operations are required,
especially to materialize large intermediate results of a
query in a NUMA-aware fashion.

(3) We propose a NUMA-optimized high-throughput rout-
ing layer that supports unicast and multicast to e�-
ciently distribute data commands between workers. Ad-
ditionally, the routing layer implements query process-
ing primitives and is able coalesce similar data com-
mands to the same partition.

(4) We describe NUMA-aware load balancing mechanisms
to e�ciently move large portions of a partition between
workers. Moreover, we present a configurable load bal-
ancing algorithm that o�ers a tunable level of balancing
aggressiveness.

(5) We evaluate ERIS and compare our approach with a
NUMA-agnostic in-memory storage engine and show
that ERIS scales even on large-scale NUMA systems.
Additionally, we use hardware instrumentation tech-
niques to reason about our results.

Structure
The remainder of this paper is structured as follows: In Sec-
tion 2 we describe current NUMA platforms. Section 3 gives
an overview of the architecture of ERIS and details on its
components. In the following Section 4 we describe imple-
mentation details and evaluate ERIS on di�erent hardware
platforms. In Section 5 we compare our approach to the ex-
isting related work. Finally, Section 6 concludes the paper
and outlines future work.

2. NUMA SYSTEMS
In this section, we introduce NUMA system architec-

tures and present low level benchmark results of the NUMA
machines used in our experimental setup. As a reference
throughout the section, these systems are depicted in Fig-
ure 2. We derive fundamental design principles for NUMA-
aware storage engine architectures at the end of the section.

2.1 NUMA System Architecture
NUMA systems consist of several interconnected multi-

processors, that are also referred to as nodes. Each mul-
tiprocessor contains multiple processing units (cores) and
an integrated memory controller (IMC). Consequently, the
installed main memory is distributed among the IMCs in
di�erent multiprocessors. However, each multiprocessor can
access each memory location. Thus, latency and bandwidth
of memory accesses depend on the distance between the re-
questing multiprocessor (source node) and the multiproces-
sor that contains the data (home node). The local memory
associated with each multiprocessor is accessed with low la-
tency at a high bandwidth. In contrast, remote memory is
accessed via point-to-point connections [9, 10] between the
multiprocessors that add latency and limit the achievable
bandwidth. In the worst of our cases the latency of remote
access is approximately 10 times higher and the bandwidth
is limited to about 11% in comparison to local accesses.



Core

Core

L3 Cache

IMC

QPI

…

I/O

RAM RAM

RAM RAM

Core

Core

L3 Cache

QPI

IMC

…

I/O

IMC

QPI

I/O L3 Cache

Core

Core

…

QPI

IMC

I/O L3 Cache

Core

Core

…

(a) Intel Machine (Detailed).

NODE

RAM

NODE

NODE

RAM

NODE

RAM

RAM

NODE

RAM

NODE

NODE

RAM

NODE

RAM

RAM

(b) AMD Machine (Topology View).

RACK
4*IRU

IRU

IRU

IRU 

IRU

8

8

8

8

IRU   8*Compute Blade

2

2

2

2

Compute Blade
2*CPU

RAM RAM

NODE NODE

HARP

QPI QPI

NumaLinkBLADE BLADE

BLADE

BLADE BLADE

BLADE

BLADE BLADE

(c) SGI Machine (Topology View).

Figure 2: NUMA Machines used for Evaluation.

Intel machine AMD machine SGI machine
4x Intel Xeon E7-4860 4x AMD Opteron 6274 (dual node) 64x Intel Xeon E5-4650L
40 cores (80 HW threads) 64 cores 512 cores
128 GB memory (32 GB per node) 64 GB memory (8 GB per node) 8 TB memory (128 GB per node)
24 MB LLC per sockets 12 MB LLC per socket (2x 6 MB) 20 MB LLC per socket
QPI: 12.8 GB/s per link HyperTransport: 12.8 GB/s per link QPI: 16 GB/s to HARP

NumaLink6: 2x 6.7 GB/s between HARPs
Ubuntu 13.4 server (3.8.0-29) Ubuntu 13.4 server (3.8.0-31) SLES 11 SP2 (3.0.93-0.5)

Table 1: Machine Specification Overview.

Multiple levels of caches are commonly used to mitigate
the performance impact of the above-mentioned latency and
bandwidth constraints. The caches are distributed over the
multiprocessors as well. All currently available NUMA sys-
tems enforce cache coherence to maintain a consistent view
of all processing units on the shared address space. Small-
scale NUMA systems with a managable amount of nodes
typically rely on snooping based cache coherence protocols
that involve frequent broadcasts of requests to all multi-
processors. It has been shown in prior work [8] that the
overhead of the coherence protocol caused by accesses to
shared data can be very severe in such systems. In contrast,
larger systems like the SGI UV 2000 usually implement di-
rectory based cache coherence protocols between the nodes.
SGI, e.g., uses NumaLink to connect blades with one another
while the two nodes in each blade are connected to a hub via
their Intel QPI links. The hub presents itself to the nodes
as an external memory controller that participates in the
snooping based coherence protocol. However, the requests
are not broadcasted to all the hubs in the system. Instead,
requests are only forwarded if the corresponding directory
entry indicates a remote copy.

Naturally, data placement is an important aspect to con-
sider with NUMA systems and data should be located close
to the multiprocessor that accesses it frequently. The default
data placement policy of Linux is called first touch. Newly
allocated memory is placed local to the thread that actually
writes (touches) it for the first time. It is, however, possible
that memory is allocated on remote memories. Moreover,
the default thread scheduler in Linux operating systems may
migrate threads frequently to di�erent multiprocessors, al-
though it prefers intra-node thread migrations to inter-node
migrations. This leads to remote memory accesses, even

when the memory was allocated locally in the first place.
Hence, the operating system leaves many opportunities for
suboptimal (i.e., remote) memory access patterns. This is
especially true, when many threads access a large portion of
the main memory.

2.2 Low-Level Benchmark Results
For our algorithm engineering and performance experi-

ments, we use three di�erent NUMA systems ranging from
4 multiprocessors and 64 GBs of main memory to 64 mul-
tiprocessors and a total of 8 TBs of main memory. The
hardware specifications of the Intel machine with 4 multi-
processors, the AMD machine with 8 multiprocessors (on
4 sockets), and the SGI machine with 64 multiprocessors
are summarized in Table 1. To gain deeper insights in the
performance of the three di�erent NUMA machines, we con-
ducted several low level benchmarks. The best-case band-
width and latency performances are an upper bound for the
achievable performance and will help us to reason about the
performance of our own algorithms. All measurements are
performed with the BenchIT tool [8]. The results are shown
in Table 2.

2.2.1 Intel machine

The Intel machine with 4 multiprocessors is the smallest
system in our setup. The nodes of the Intel machine are fully
connected via QPI links [10] as depicted in Figure 2(a). The
results of our experiments show that the latency of remote
memory accesses is only 50% higher than for local accesses.
The impact of the QPI link on the achievable bandwidth
is more severe as it results in 2.5 times lower data rates
compared to local memory. However, the e�ects of the non-
uniform memory access are small compared to the other two



Intel machine AMD machine SGI machine
distance bandwidth

(GB/s)
latency
(ns)

distance (link width) bandwidth
(GB/s)

latency
(ns)

distance bandwidth
(GB/s)

latency
(ns)

local 26.7 129 local 16.4 85 local 36.2 81
1 hop QPI 10.7 193 1 hop HT (full link) 5.8 136 2nd processor 9.5 400

1 hop HT (split,single) 4.2 152 1 hop NUMALink 7.5 505 - 515
1 hop HT (split,dual) 2.9 152 2 hop NUMALink 7.5 625 - 635
2 hop HT (split,single) 3.7 196 3 hop NUMALink 7.1 745 - 755
2 hop HT (split,dual) 1.8 196 4 hop NUMALink 6.5 870

Table 2: Memory Read Bandwidth in GB/s and Read Latency in ns. Bandwidths are measured with concurrent sequential
reads from all cores of the multiprocessor in order to maximize the amount of outstanding requests. Latencies are measured
with a single thread that performs a pointer-chasing routine on memory allocated at di�erent multiprocessors.

machines as communication between any two multiproces-
sors requires only one hop via QPI.

2.2.2 AMD machine

The second machine in our setup is an AMD machine. As
shown in Figure 2(b), it is actually a 4 socket system where
each socket houses a dual node package. The two nodes
in a package communicate via HyperTransport [9] which
practically results in a system with 8 multiprocessors. Each
multiprocessor has four HyperTransport ports to connect
to either the I/O subsystem or to other multiprocessors.
As a unique feature of the AMD machine, HyperTransport
links can be split into sublinks to connect a node with two
other nodes with just one HyperTransport link. However,
this results in di�erent link bandwidths for di�erent links.
Additionally, even with split links, the AMD machine is not
fully connected and certain routes require two hops.

As indicated in Figure 2(b), the two nodes that share
a socket are connected via a dedicated (not split) Hyper-
Transport link and can therefore utilize the full 16 bit link
widths. Connections between other nodes are realized with
8 bit sublinks and hence have a lower connection bandwidth.
Furthermore, some of the split links only have one sublink
populated (denoted by split,single in Table 2) while both
sublinks are occupied on other links (denoted by split,dual).
Our experiments mirror these characteristics; depending on
the distance of memory and accessing thread, we measure
six di�erent bandwidths and four di�erent latencies. The
disparities between local access and the furthest remote ac-
cess are a factor of 9.1 in bandwidth and 2.3 in latency.

2.2.3 SGI machine

The third machine in our setup is an SGI UV 2000 with
64 multiprocessors and a total of 8 TBs main memory. An
overview of the topology is shown in Figure 2(c). Our sys-
tem consists of 1 rack that houses 4 Individual Rack Units
(IRUs). Each IRU consists of 8 Compute Blades, that in
turn contain 2 multiprocessors each. Each socket is equipped
with an 8-core Intel Xeon CPU with 128 GBs of local main
memory.

The two multiprocessors in a Compute Blade are con-
nected via QPI to a communication hub called HARP. The
HARPs are NumaLink hubs that connect the multiproces-
sors in a Compute Blade to other Compute Blades in the
same as well as in other IRUs. As shown in Figure 2(c),
each blade in our system has 8 connections to other blades.

Each connection consists of two NUMALink6 links, one for
each multiprocessor in the blade. The 8 blades in an IRU
are connected as a 3D enhanced hypercube [25]. Each blade
in an IRU is additionally connected to two blades in other
IRUs. This topology leads to connections with up to four
hops and six di�erent bandwidths.

Measuring all possible distances reveals that the di�er-
ences in bandwidth and latency between local access and
the furthest remote access are as high as factor 5.5 and 10.7,
respectively.

2.3 Design Principles for NUMA-Aware
Storage Engines

From the general NUMA architecture as well as our
benchmark results, we derive that a NUMA system should
be treated like a distributed system and that a scalable in-
memory storage engine must be designed to maximize local
memory accesses. Reading from or writing to remote mem-
ory su�ers from up to ten times higher latency and signif-
icantly lower bandwidths, hence remote accesses should be
avoided whenever possible and batching should be consid-
ered for inevitable accesses to hide the bad latency. Fur-
thermore, remote and concurrent memory accesses lead to
cache concurrency as well as worse cache locality and hence
higher cache coherence overhead. As a conclusion, a scalable
storage engine for NUMA systems must provide partition-
ing of the data that adapts quickly to changing workloads
by employing e�cient load balancing algorithms. Moreover,
by means of data and thread placement, the storage engine
must minimize remote memory accesses by primarily work-
ing in data object partitions that are located in the local
main memory. In turn, this leaves su�cient link capaci-
ties for remote accesses caused by inevitable communication
during query processing and by load balancing operations.
The operating system cannot provide su�cient locality due
to its insu�cient knowledge about the application and its
partitioning.

3. ERIS
In this section we describe the architecture of ERIS and

its individual components as visualized in Figure 3. The
central components of the storage engine are the worker
threads, which we call Autonomous Execution Units (AEU).
Each core, respectively hardware context, of the platform
runs exactly one AEU. All AEUs pinned on the same mul-
tiprocessor use a common memory manager, because they
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share the same local main memory and are thus able to
quickly exchange data partitions during load balancing. A
set of partitions—each belonging to a di�erent data object—
is assigned to each AEU. The AEU’s main task is to man-
age its partitions and to process incoming data commands
(i.e., scans, lookups, and inserts/upserts) on these parti-
tions. To e�ciently route data commands during query pro-
cessing between AEUs, ERIS includes a NUMA-optimized
high-throughput data command routing layer. The NUMA-
aware load balancer of ERIS observes the current load of
the AEUs via a monitoring component and triggers balanc-
ing commands in case of an uneven AEU utilization. In the
following we describe the central components of ERIS in
more detail.

3.1 AEUs and Memory Management
Traditional architectures bind transactions to a number of

threads and use a global memory manager (per data object).
This way of accessing and storing data is highly discourag-
ing when running on NUMA platforms, because data is dis-
tributed in an uncoordinated way across the memory of the
di�erent multiprocessors. In turn, this causes a high num-
ber of remote memory accesses by the transaction threads
that are accessing the data object.

For that reason, ERIS employs a data-oriented architec-
ture where each data object is logically partitioned. Each
available core of the system runs an AEU, which is bound to
be only executed on this single core or hardware context re-
spectively. Every single AEU gets assigned a set of disjoint
partitions—each belonging to a di�erent data object—and
is exclusively responsible for that portion of the individual
data object. This approach restricts memory accesses of an
AEU to the multiprocessor’s local main memory and data
objects do not have to be protected against concurrent ac-
cesses via latches. ERIS primarily uses range partitioning to
split data objects into partitions. We decided against hash
partitioning, because it is not order preserving and thus dis-
allows e�cient range scans and hinders an e�cient load bal-
ancing. Nevertheless, ERIS supports hash tables by using
di�erent hash functions on a per-partition level. In scenar-
ios where a table is solely completely scanned, we employ
physical data size partitioning instead of range partitioning,
because there is no suitable attribute as partitioning criteria
available. Here, ERIS only keeps track of those AEUs that
actually store a partition of the corresponding data object
and uses the multicast capabilities of the routing layer to
distribute data commands.

Regarding the memory management, a global memory
manager (per data object) is not feasible on a NUMA plat-
form. Instead, ERIS deploys one memory manager per mul-

tiprocessor (and data object). Per-multiprocessor memory
managers help to reduce the contention on the memory man-
agement subsystem, which is often the bottleneck during
writing operations to a data object. Moreover, this approach
limits allocations of AEUs to the local main memory and
enables the load balancer to perform an e�cient intra-node
balancing. To scale with a high number of cores per mul-
tiprocessor, our memory managers use thread-local caching
mechanisms and thus decrease contention on the local mem-
ory management.

On the right hand side of Figure 3 we illustrate the AEU
loop as well as the local memory organization of an AEU.
The AEU mainly keeps local data command bu�ers and the
actual data object partitions (either stored as a column-store
or an index). In the first stage of the loop, the AEU scans
its data command bu�er, which is periodically filled by the
routing layer, and groups commands by the accessed data
object and the command type. This optimization step is
beneficial to coalesce the same type of access to the same
partition. For instance, an AEU is able to execute multi-
ple scan commands on the same partition with a single scan
and is thereby implementing scan sharing in combination
with MVCC to ensure isolation. Moreover, the command
grouping allows us to execute multiple index lookup or in-
sert/upsert operations in a single batch operation to hide
the main memory latency. Following the grouping step, the
AEU actually processes its data command bu�er, which is
the most time consuming part of the loop. Afterwards, the
AEU checks its command bu�er for pending balancing or
transfer commands. Such commands force an AEU to grow
or shrink its partition or to transfer a range of its partition
to another AEU. We discuss the details of the load balancing
process in Section 3.3.

3.2 NUMA-Optimized High-Throughput
Data Command Routing

The data command routing is the most essential part of
ERIS, because AEUs have to be supplied with data com-
mands just in time. Especially during the execution of an-
alytical queries, large amounts of data commands have to
be routed between AEUs (e.g., lookup operations during a
join). Thus, the main goal of the data command routing is
to distribute data commands at a high throughput. A data
command consists of a storage operation type (i.e., scan,
lookup, or insert/upsert), a data object identifier, a refer-
ence to a callback function, a data segment that contains all
the necessary parameters for the storage operation (e.g., a
batch of keys for the lookup or filters for a scan), and addi-
tional data that is necessary for the query processing. Our
data command routing mechanism is shown in Figure 4. The
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core components are the partition tables, which keep track
of the partitioning of individual data objects. As already
mentioned, a data object is either clustered, respectively
sorted, on one or more of its attributes or it is distributed
without any partitioning criteria. In the clustered case, the
routing table stores the attribute range to AEU mapping
(range partition table). If the data object is not partitioned
on any attribute, the routing table only saves whether or
not an AEU stores a partition of that data object (bitmap
partition table). Since the routing tables are small data
structure that are rarely updated (only during load balanc-
ing) and are frequently read, they usually fit into the caches
of all multiprocessors and are thus not causing any remote
memory accesses.

Besides the routing tables, our data command routing
uses a comprehensive local bu�ering strategy. Each AEU
uses a set of outgoing bu�ers—one unicast bu�er and one
multicast reference bu�er for each running AEU in the
system—, a multicast bu�er, and two bigger incoming
bu�ers. All bu�er types are stored in the local main memory
of each AEU to provide fast access to them.

Every time an AEU generates a data command during
the processing stage, it starts with a batch lookup of the re-
sponsible AEUs for that data command in the correspond-
ing routing table of the target table (step 1 in Figure 4).
The routing tables use the content of the data segment of
the data command to lookup the designated target AEUs.
As soon as the target AEUs are determined, the routing
layer splits the command into smaller pieces, for instance
if a lookup data command contains keys in its data seg-
ment that belong to di�erent partitions. Data commands
for a single AEU are written to the corresponding outgoing
bu�er of the source AEU (step 2). If multiple AEUs are re-
sponsible for a data command (e.g., a scan that needs to be
distributed to di�erent AEUs), the command itself is written
to the multicast bu�er and references to this data command
are stored in the individual multicast reference bu�ers. If
an outgoing bu�er is either full or the AEU starts over its
processing loop, the specific outgoing bu�er including its
multicast data commands is copied to the incoming bu�er
of the target AEU (step 3). This local pre-bu�ering dramat-
ically increases the data command routing throughput, be-
cause the contention on the incoming bu�ers is reduced and
multiple data commands can be copied sequentially. Thus,
the high latency of remote memory accesses on the NUMA
platform does not become the bottleneck.

While outgoing bu�ers are private to an AEU and thus
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Figure 5: Data Command Routing Throughput as a Func-
tion of Local Bu�er Size.

do not require any concurrency control, incoming bu�ers are
written by di�erent AEUs and are read by the host AEU at
the same time. Hence, incoming bu�ers need an e�cient
and ideally latch-free concurrency control mechanism. We
employ an adapted version of the latch-free multi-bu�er pro-
posed in LLAMA [16]. Each AEU has two incoming bu�ers
of an equal size. One bu�er is currently writable for all
AEUs and the other one is currently the processed data
command bu�er of the owning AEU. To implement incom-
ing bu�ers latch-free, each of them contains a 64bit wide
bu�er descriptor that uses 1bit for determining whether the
bu�er is still active or not, 32bit to save the current o�set
inside the bu�er, and the remaining 31bit for storing the
number of active writers to the bu�er. If an AEU wants to
write to an incoming bu�er, it first determines the writable
bu�er, increases the o�set by the size of data that needs to
be written, increments the number of active writers, and fi-
nally atomically updates the bu�er descriptor using a CAS
instruction. If the atomic bu�er descriptor update fails, the
entire process is repeated. This approach allows multiple
AEUs to write to the incoming bu�er in parallel. After the
AEU has successfully written its data commands, it atomi-
cally decrements the number of active writer to the bu�er.
The owning AEU of the incoming bu�ers swaps both bu�ers
each time it enters the data commands processing stage.
The AEU updates the pointer to the new writable bu�er
and atomically flips the active bits of both bu�ers. After-
wards, it holds on until all AEUs have finished writing their
data to the new data command processing bu�er.

We evaluated the e�ect of the outgoing bu�er size on the
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Figure 6: Configurable Load Balancing Algorithm of ERIS.

routing throughput on the AMD machine (see Section 2) and
visualize the results in Figure 5. Regarding the raw routing
throughput, where AEUs skip the processing phase, we ob-
serve that the throughput doubles with the size of the outgo-
ing bu�ers until the bandwidth of the NUMA interconnects
start to saturate. If we enable the processing phase and gen-
erate index lookup data commands, the peak throughput
is already reached for an outgoing bu�er size of 128 data
commands, because the throughput is now dominated by
the index lookups during the processing stage of the AEUs.
A comparison of both measurements demonstrates the ef-
fectiveness of our NUMA-optimized high-throughput data
command routing.

3.3 Load Balancing
Besides data command routing, ERIS requires a NUMA-

aware load balancer component to adapt the partitioning to
a changing workload. Since ERIS aims at analytical work-
loads, the maximization of parallelism is the main objective
of the load balancer. Thus, there is no need for inter-data-
object balancing, for instance to colocate certain partitions
of di�erent data objects on the same AEU as it is beneficial
for transactional workloads. We distinguish between two
major scenarios:
(1) The data object is always scanned in its entireness and

is thus not partitioned by a specific attribute.
(2) The data object faces lookups or scans in certain ranges

and is thus partitioned by one or more attributes.
In the first case, the physical partition size is the consid-

ered metric for the load balancer, because the scan works
only e�cient if all AEUs have to scan the same amount of
data. In the second scenario, we use the access frequency
as primary metric, because lookups and range scans only
involve a certain set of AEUs. Additional metrics for the
latter scenario are the mean execution time of a data com-
mand for a specific partition. Di�erent execution times are
mostly a result of di�erent depths of tree-based index struc-
tures, or column store partitions that are frequently accessed
but fit into the cache of a multiprocessor, or e�ects of data
command coalescing.

The ERIS adaption loop starts with the monitoring of the
di�erent metrics on a per data object level. Based on the
captured metrics, the load balancer periodically checks the
load of ERIS for imbalances. If the standard deviation be-
tween the di�erent AEUs exceeds a given threshold, the load
balancer executes a load balancing algorithm that calculates
a new target partitioning. With the help of the current and
the targeted partitioning, the load balancer computes a se-
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Figure 7: NUMA-Aware Partition Transfer via Link And
Copy.

ries of balancing commands that are routed to the involved
AEUs. Such balancing commands include the new data re-
spectively key range the AEU is responsible for and a set of
transfer commands that instruct the AEU where it has to
fetch the missing partition data from. Next, we will describe
our configurable load balancing algorithm and the NUMA-
aware partition transfer mechanisms in more detail.

3.3.1 Configurable Load Balancing Algorithm

The load balancing algorithm receives the approximated
metric distribution of a single data object of the recent sam-
ple period as well as the current partitioning as input and
outputs the targeted partitioning for the respective data ob-
ject. Figure 6 shows an exemplary metric distribution mea-
surement (the access frequency in this specific case) that was
sampled per partition and is represented as a histogram. In
this specific scenario, partitions 3 to 6 each got 25% of the
accesses, which is a severe imbalance. The most aggressive,
but also most expensive approach is taken by the One-Shot
load balancing algorithm configuration. This algorithm con-
figuration computes the average access frequencies of all par-
titions and calculates a target partitioning that is fully bal-
anced. The One-Shot configuration is suitable for workloads
that change rarely but heavily. An alternative configuration
uses the moving average (MA). For instance, the MA1 con-
figuration computes for each partition the moving average of
the partition’s direct neighbors including itself and adjusts
the target partitioning appropriately. The MA configuration
adapts more slowly to the new workload, but does not cause
as much balancing overhead as the One-Shot algorithm and
is thus suitable for highly dynamic workloads. As depicted
in Figure 6, the aggressiveness of the MA configuration de-
pends on the range the moving average is calculated over and
turns into the One-Shot algorithm when configured as MA7
in our setup, because it equally calculates the full average
across all partitions. As soon as the load balancing algo-
rithm has finished the calculation of the target partitioning,
the latter is compared to the current partitioning and the
load balancer generates a series of balancing commands for
that data object.

3.3.2 NUMA-Aware Partition Transfer

If the load needs to be balanced, each AEU that has to
grow or shrink its local partition of the data object receives
a balancing command. Such a balancing command first in-
cludes the new partition ranges for the AEU. The AEU up-
dates the corresponding routing tables and saves the lower
and upper bounds of its ranges internally, because it has to



compare each incoming data command against its bounds
to check its validity. If the AEU encounters an invalid data
command (i.e., a data command that references keys out-
side its updated range) it forwards this data command to
the AEU that is now responsible for the range. If a data
object is balanced that is not partitioned by a specific crite-
ria, the balancing command includes the number of tuples
that have to be fetched or handed over to another AEU. To
avoid situations of overlapping partition ranges, all AEUs
that are involved in the current balancing cycle have to be
synchronized for updating a data object’s routing table.

Besides the information about the new partition ranges,
a balancing command includes a set of transfer commands.
We continue with the example of Figure 6 and look at the
balancing of partitions 1 to 4 using the One-Shot load bal-
ancing algorithm. The balancing of partitions 5 to 8 is very
similar, because this specific workload is symmetric. In Fig-
ure 7, we illustrate the corresponding partition transfer pro-
cess for that example. For reasons of simplicity, we assume
a NUMA system consisting of four multiprocessors and two
cores per multiprocessor in the example. Because the cur-
rent range of partitions 1 and 2 is not accessed by the new
workload, partition 1 receives a first transfer command in-
structing the AEU to take over the entire range of partition
2. Since both partitions reside in the same local memory
and thus in the same memory management domain, AEU 1
uses the cheap link mechanism to transfer partition 2. To
do so, AEU 1 firstly unlinks the respective portion of the
partition (the complete partition in our case). Afterwards,
AEU 1 simply links (e.g., in case of a tree-based index) re-
spectively appends (in case of a column-store) partition 2
to its own partition 1. For the transfer of half of partition
4 to partition 3, ERIS also uses the link mechanism, be-
cause both partitions are located on multiprocessor 2. The
remaining two transfers from partition 3 to partitions 1 and
2 are inter-node transfers and thus use the copy mechanism
for the partition transfer. Such a copy operation requires a
cooperation between source and target AEU, if the data ob-
ject is stored as an index to avoid the high latency of remote
memory accesses while traversing through the tree-based in-
dex. In this case, the source AEU forwards the transfer com-
mand to the source AEU, which flattens the partition to an
exchange format and streams it sequentially to the target
AEU. The target AEU converts the data stream back to an
index and links it to its existing partition. If the data object
is already stored in a flat format such as a column store, the
target AEU directly copies the data from the source AEU.
As soon as an AEU has processed all its transfer commands,
it becomes ready to continue normal operation and when all
AEUs have completed their balancing command, the bal-
ancing loop starts over again.

4. IMPLEMENTATION DETAILS AND
EVALUATION

In this section, we detail our implementation of an AEU
and investigate the behavior of ERIS. We evaluate ERIS’
scan, lookup, and upsert performance by comparing it to the
NUMA-agnostic shared index respectively shared scan as
baseline. For the baseline experiments we use the same data
structures as for the AEUs. The di�erence is that those data
structures are not partitioned and are thus synchronized via

atomic instructions for updates, because they are accessed
by di�erent transaction threads in parallel.

An AEU implements a simple column store as well as a
prefix tree [7] as index. We decided to use a prefix tree,
because this index structure is order-preserving (applies not
to a hash table), in-memory optimized, and o�ers a high
update performance (does not apply to a B+-Tree). To
implement the range partition tables of ERIS, we decided to
deploy a CSB+-Tree [24], because it works fast for sparsely
distributed data and it scales with an increasing number of
ranges, respectively AEUs, compared to a simple array.

For our evaluation, we compare di�erent configurations
(e.g., di�erent index sizes) and reason about the observed
results. Furthermore, we compare ERIS to di�erent mem-
ory allocation strategies for column data and evaluate their
scan performances. For certain experiments, we addition-
ally present results of hardware event measurements to gain
deeper insights in the algorithms’ behaviors.

We have already demonstrated the ability of ERIS to
scale with an increasing number of multiprocessors, and
hence cores, in Figure 1. Moreover, in Figure 5 we pre-
sented experiment results that show that the NUMA-aware
high-throughput routing is not the bottleneck of ERIS.

4.1 Evaluation Setup
All our experiments are executed on the three machines

that were introduced in Section 2.2 , i.e., the Intel machine,
the AMD machine, and the SGI machine (cf. Table 1). The
executable files are compiled with the g++ compiler, using
optimization level O3. The shared index experiments are
executed with numactl –interleave=all to interleave the
memory across all available multiprocessors. Interleaving
the memory resulted in slightly higher throughputs of the
shared index compared to memory agnostic executions. A
single benchmark run for upsert/lookup performance com-
prises two phases; (1) random keys are inserted into the
index for about one minute and afterwards, (2) random
keys are read from the index for another minute. Insert
and lookup throughputs are reported for the two phases re-
spectively. In the static workload cases, keys are uniformly
distributed across the dense key domain. If not stated oth-
erwise, the prefix trees are configured with a prefix length
of 8bit. In a scan performance benchmark run, a column
with random entries is generated and afterwards scanned
repeatedly for one minute.

The throughput of storage operations is measured and re-
ported by the application itself. We use di�erent tools to
measure the utilization of the links that connect multipro-
cessors, the open source tool likwid [1] on the Intel and
the AMD machine and the SGI tool linkstat-uv on the
SGI machine. Hardware performance counters are evalu-
ated with likwid on the Intel and the AMD machine and
VampirTrace [2] on the SGI machine.

4.2 Static Workload Experiments
For all static workload experiments, the load balancer

is deactivated and the workload does not change over the
whole benchmark run, i.e., keys to upsert or lookup are
evenly distributed across the key domain and scans are over
the full key domain.
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(a) Lookup on Intel Machine.
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(b) Lookup on AMD Machine.
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(c) Lookup on SGI Machine.
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(d) Upsert on Intel Machine.
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(e) Upsert on AMD Machine.
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(f) Upsert on SGI Machine.

Figure 8: Lookup/Upsert Throughput Depending on Index Size.

4.2.1 Point Access with Different Index Sizes

In the first set of experiments, we compare the lookup and
upsert throughput of ERIS to the shared index for di�erent
index sizes. The results are shown in Figure 8. The index
sizes vary from 16 million keys to 2 billion keys on the AMD
and Intel machine and from 16 million keys to 32 billion keys
on the larger SGI machine. As a reference, 1 billion keys re-
quire approximately 25GBs in memory and in our largest
experiment, the index is as big as 0.8TB. Figure 8(a) shows
that for small indexes on the small machine, the shared
index outperforms ERIS. The reason for this is the small
overhead that is introduced by the NUMA-optimized data
command routing in ERIS. However, as the number of mul-
tiprocessors increases and with larger indexes, ERIS clearly
supersedes the shared index. While on the eight node AMD
machine, ERIS has a throughput that is about 1.6 times
higher than the shared index (Figure 8(b), 1 billion keys),
on the larger SGI machine, ERIS executes already 3.5 times
as many lookups per second as the shared index (Figure 8(c),
16 billion keys). Finally, Figure 8 shows that the upsert per-
formance behaves similar to the lookup performance, except
the lower absolute throughput values.

4.2.2 Scan Performance

In the second experiment, we compare ERIS’ scan per-
formance with two di�erent other memory allocation strate-
gies for column data. The results on the SGI machine are
shown in Figure 9. In the experiment, all AEUs or parallel
thread respectively1 scan a column with about 8 billion en-
tries. The memory for the column data is allocated (1) on
one single multiprocessor (Single RAM ), (2) interleaved on
all multiprocessors (Interleaved), or (3) on the multiproces-
sor where the AEU is executed (ERIS). In the Single RAM
case, the scan performance is bound by the read bandwidth
of the memory controller (cf. Table 2). The scan perfor-
mance with interleaved memory is bound by the di�erent
link bandwidths. Only ERIS is able to achieve optimal scan
performance. Figure 9 shows that ERIS achieves a 6.6 times

1488 cores, or 61 multiprocessors, is largest possible working
set in the batch system on our SGI machine.
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Figure 9: Scan Bandwidth of ERIS Compared to Naïve
Memory Allocation Strategies on SGI.
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Figure 10: L3 Cache Miss Ratio on AMD.

higher bandwidth than does reading from memory that is in-
terleaved over all multiprocessors. In the past, interleaving
has often been proposed as a method of choice to overcome
NUMA e�ects. However, our experiment clearly shows the
drawback of such an approach.

4.2.3 L3 Cache Usage

To better understand the lookup performance of ERIS
and the shared index, we investigate the L3 cache usage in
this experiment. For smaller index sizes, larger portions of
the upper levels of the prefix trees fit in the caches. For
larger index sizes, the last level cache plays a minor role
and the performance is memory bound. It can be seen in
Figure 8 that for increasing index sizes, the performance of
the shared index is earlier memory-bound than the perfor-
mance of ERIS. The explanation is that ERIS makes better
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use of the L3 cache. Because each AEU in ERIS serves a
distinct partition and hence a subset of the tree, there is
better data locality and less concurrency for the L3 cache.
Consequently, the upper levels of the tree fit in cache for
larger index sizes (see, e.g., [12] for details on cache concur-
rency e�ects). To verify our theory, we have calculated the
L3 cache miss ratio for di�erent index sizes on the AMD
machine2. Furthermore, we have evaluated the state of the
cache line for each L3 cache hit (for availability of the re-
spective counters, this is evaluated on the Intel machine3).
Figure 10 shows that the shared index causes a higher miss
ratio for smaller indexes, compared to ERIS. This is sup-
ported by Figure 11, which shows that for the shared index
79.3% of all hits are on Shared or Forward cache lines which
implies that the same cache line is present in another cache.
Cache lines that are kept in multiple caches reduce the e�ec-
tive size of all caches and increase the miss ratio. ERIS on
the other hand has significantly better data locality, which
can be seen in Figure 11 where 97% cache hits go to cache
lines in Modified or Exclusive states.

4.2.4 Link and Memory Controller Usage

ERIS is designed such that it reduces communications
between multiprocessors. The significantly higher through-
puts of ERIS as well as the L3 cache usage already suggest
that this goal is achieved. However, to further verify our
theses, we measure the average link usage over all links in a
10 seconds steady state window4. The results for the AMD
machine are shown in Figure 12. The shared index has to
transfer a total of 83.8 GB/s to fulfill all remote memory
requests. At the same time, ERIS only transfers 17.8 GB/s
(mainly caused by the data command routing facility) while
at the same time achieving a higher throughput and thus
performing more memory operations. The shared scan with
interleaved memory allocation transfers a total of 75.6 GB/s,
compared to 1.2 GB/s transfered by ERIS. These numbers
together with the low level results in Section 2 explain the
bad throughput of the shared setup. Each remote access
su�ers from the worse latency and bandwidth compared to
local memory accesses.

2The L3 cache miss ratio is calculated as the quotient
of the following hardware counters: L3 Cache Misses and
Request to L3 Cache [4].
3The cache line states are measured using the LLC_HITS
counter extensions in the C-Box of the Intel CPU [11].
4We measure the link usage by evaluating the Link
Transmit Bandwidth counters of the AMD CPU [4].
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Figure 12: Link and Memory Controller Activity on AMD
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Together with the link utilization, we have measured the
transfer bandwidth of the memory controllers5. The results
are also shown in Figure 12. On average, only 1 out of 8
memory requests of the shared setup go to local memory
and remote memory requests su�er from higher latencies.
Therefore, the shared index can only issue enough memory
requests to transfer an average of 41.6 GB/s from all mem-
ory controllers while ERIS is able to transfer 73.0 GB/s.
The shared scan produces a transfer rate of only 33.8 GB/s,
compared to 122.9 GB/s transferred by ERIS. The transfer
rate of ERIS’ scan operator equals 93.6% of the possible ac-
cumulated memory bandwidth of the system (cf. Section 2).

4.3 Dynamic Workload Experiments
In this section, we show that ERIS is able to keep a high

throughput even under changing workload conditions. For
our experiments, we use a workload that randomly accesses
the full key range (lookup) of 512 million keys for an ini-
tial period of 10 seconds. After this period, the workload
changes drastically such that only half of all keys (in the
range from 128M to 384M) are accessed afterwards. In the
remaining time of the experiment, the workload is changed
4 more times with 20 seconds between any two changes.
These remaining changes are only slight changes which are
simulated by shifting the key range of interest by 8 million
to the left.

Figure 13 shows the lookup throughput of ERIS over
time. The above described workload changes are easily
recognizable as short drops in the throughput curve. The
chart contains performance numbers for a baseline run with-
out load balancer and for three di�erent load balancing al-
gorithms (see Section 3), the One-Shot algorithm as well
as Moving Average algorithms with window sizes of 1 and
8. The One-Shot algorithm causes the deepest drop of the
throughput after each workload change, because all reparti-
tionings that are necessary to regain a fully balanced work-
load are executed at once. This causes large overhead (some
partitions need to be copied) but at the same time results in
the fastest recovery time. The chart shows that the through-
put reaches its maximum again shortly after each workload
change. The other extreme is the MA1 algorithm, which
only slightly adapts the partitioning in each evaluation pe-
riod. Hence, the performance does not drop that drastically,
but it takes more time before the maximum throughput is
reached again. The MA8 algorithm appears to be the best
5We measure the memory controller by evaluating the DRAM
Accesses counter of the AMD CPU [4].



0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120

Th
ro

ug
hp

ut
 [M

ill
io

n/
s]

Time [s]

MA1 One-Shot MA8 w/o Load Balancer

Figure 13: Load Balancer Experiments on AMD Machine.

compromise in this setup between performance drop and re-
covery time on that specific system.

As a conclusion, we note that the MA load balancing algo-
rithm, with a parameter that depends on the machine, o�ers
the best performance. Moreover, the parameter can be used
to shift the behavior between gentle performance drops and
quick recovery times, depending on the constraints of the
application running on top.

5. RELATED WORK
Non-uniform memory access as well as thread-placement

in multiprocessor systems have been studied in the operat-
ing systems and high-performance computing communities
for several years. A more recent result is from Hackenberg et
al. who have investigated the low-level memory performance
and cache coherence e�ects at the granularity of single cache
lines [8]. Blagodurov et al. propose a NUMA-aware sched-
uler and user-level scheduling on NUMA systems, though
not specific to a certain application domain [5, 6].

The consequences of NUMA architectures for database
management systems have been investigated as well, e.g.,
by Porobic et al. [22]. The authors perform a detailed anal-
ysis of di�erent shared and distributed data deployments in
NUMA systems. To show the performance impact of the
NUMA architecture on a DBMS, they use Shore-MT as a
scalable storage manager and TPC-C as an OLTP work-
load. Kiefer et al. have investigated memory access char-
acteristics and cache e�ects in NUMA systems based on a
synthetic benchmark that mimics a database system’s be-
havior as well as a real database benchmark [12].

Several papers have investigated NUMA-aware algorithms
or single database operators. Albutiu et al. propose a paral-
lel, NUMA-aware sort-merge join for main memory database
systems [3]. Lang et al. presented a NUMA-aware hash join
operator for an in-memory DBMS [14]. Pandis et al. argue
in favor of NUMA-aware algorithms in database systems by
investigating a shu�e algorithm [17]. All papers conclude
similar design principles for NUMA-aware algorithms which
we also propose at the end of Section 2. However, ERIS is
designed to push down NUMA-awareness deep into the stor-
age layer to support a wider range of problems (i.e., queries)
by highly optimizing the building blocks, specifically scan,
lookup, and insert/upsert.

We have already mentioned the DORA system and its
NUMA-aware extension ATraPos [21] in Section 1. In con-
trast to ERIS, these systems focus on disk-based database
systems and transactional workloads, which di�er in funda-
mental point from purely in-memory analytical workloads.

Finally, Leis et al. took a first step towards a NUMA-
Aware query processing by proposing a NUMA-aware query
evaluation framework [15]. This approach divides the base
data of an operator into morsels (batches) and employs a
work stealing approach to elastically schedule operators at
runtime. To achieve NUMA awareness, the runtime sched-
uler tries to run operators close to the data and operators
store their results in the local main memory. However, the
paper does not cover the crucial point of this approach that
is the partitioning of the base data that needs to be adapted
e�ciently at runtime. Moreover, intermediate results are
not load balanced and critical data structures like hash ta-
bles are stored in a NUMA-agnostic fashion.

6. CONCLUSIONS AND FUTURE WORK
We showed with a detailed analysis of NUMA system

architectures and low-level benchmarks that even today’s
server systems su�er from up to 10 times higher latencies
and as little as 11% of the maximum bandwidth when ac-
cessing remote memory compared to local memory access.
Based on these measurements, we derived that a NUMA sys-
tem should be treated like a distributed system and that any
application must be designed for memory locality and with
optimized explicit communication between multiprocessors
to assure a scalable performance on NUMA platforms. In
this paper we presented ERIS, a NUMA-aware purely in-
memory storage engine for tera-scale analytical workloads
that is based on a data-oriented architecture. ERIS uses
a NUMA-optimized high-throughput data command rout-
ing as well as a configurable NUMA-aware load balancing
algorithm to achieve a maximum of parallelism to execute
analytical queries with low latency. Our analysis showed
that ERIS greatly improves memory locality and cache us-
age and thus scales even on large-scale NUMA platforms.

Since ERIS only provides storage operation primitives, we
plan to implement a query processing framework on top of
ERIS to evaluate the performance of more complex queries.
Query processing with ERIS requires techniques for dis-
tributed systems and poses additional challenges for load
balancing. Since a full balancing is not always possible, we
want to to explore how AEU idle times can be leveraged for
storage maintenance and reorganization. Another impor-
tant research direction is how to realize energy awareness
on such a data-oriented architecture, because AEUs always
run at full speed and are thus consuming a high amount
of energy. Here, we want to investigate the impact of fre-
quency scaling, di�erent scheduling policies, foreign memory
accesses, and load balancing on the energy consumption.
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