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Motivation

● We all want to put discrete GPUs to work on analytics.
● Lots(!) of proof-of-concept systems in recent years

GPUDB CoGaDB MapD
OmniDB Virginian Ocelot
Galactica Red Fox GPL

● None of these systems exhibits the combination of:
− significant performance boosts,

− for complete queries of varying complexity,

− relative to state-of-the-art analytic CPU-based DBMSes.



Our contributions

1.We present a first proof-of-concept GPU-based query 
processing framework exhibiting
− significant performance boosts,

− for a selection of TPC-H queries of varying complexity,

− relative to a               state-of-the-art CPU DBMS. 

2.We propose a different focus of the effort of squeezing 
performance out of discrete GPUs.

3.We indicate clearly-realizable potential for additional speedup.

FOSS



Our system



System architecture
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Execution Engine

● Targeted at arbitrary data-processing-oriented GPU-utilizing applications.
● Not “domain-specific” knowledge of DBMS; not aware of concepts such as 

“tuple”, “table”, “column” etc.
● Supports, among others:

● CPU and GPU execution

● task- and data-level parallelism

● concurrent multi-device execution

● Going into detail would require most of the remaining time we have.
● We even have some results on multi-GPU query execution, but those could 

not fit into the paper.
● It still has some “infancy issues”, such over-conservatism in  synchronization.



Schema preprocessing

● Generated at DB load time.
● No “cheating” – only producing what’s allowed by TPC-H.
● Scalar precomputed data:

● min, max, mode, maximum multiplicity, support size etc.

● Columnar precomputed data:  
● Distinct values in order of appearance

● First and last appearances of all distinct values, etc.

● Not a free lunch: this has a cost in memory footprint.



Let's make a GPU-friendly execution plan!

… for TPC-H Q4:

… without the string column (so that we fit on the slide)

select o_orderpriority,count(*) as order_count 
from orders 
where o_orderdate >= date '1993-07-01' 
and o_orderdate   <  date '1993-07-01' +

interval '3' month 
and exists (

 select * from lineitem
 where l_orderkey = o_orderkey 

and l_commitdate < l_receiptdate)
group by o_orderpriority 
order by o_orderpriority;

select count(*) as order_count 
from orders 
where o_orderdate >= date '1993-07-01' 
and o_orderdate   <  date '1993-07-01' +

interval '3' month 
and exists (

 select * from lineitem
 where l_orderkey = o_orderkey 

and l_commitdate < l_receiptdate)
group by o_orderpriority 
order by o_orderpriority;
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Let's make a GPU-friendly execution 
plan!
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Let's make a GPU-friendly execution 
plan!
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Let's make a GPU-friendly execution plan!
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Experimental Results



The "Bottom Line" – Plan execution time

● Caveat: Not the latest MonetDB (v11.15.11 vs v11.23.7)
● These figures are somewhat misleading. Let's have a closer look...
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Query processing time breakdown
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GPU Compute/IO activity breakdown

● The Dreaded PCIe bandwidth bottleneck rears its ugly head… ~12 GB/sec
● Pipelining/chunking initial operations would often not ameliorate this.
● Idle time - mostly artifacts of our implementation which could go away.

Except for the "muscular" Q1, 
the GPU is doing work only for
6%-15% of the total time

Except for the "muscular" Q1, 
the GPU is doing work only for
6%-15% of the total time



GPU Compute Time Breakdown

Top 6 time-consuming computational kernel categories (durations in msec)
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Can be optimized away
in favor of a Gather, a weird op
(ScatterDisjunction) and 
elementwise logical ops.
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Reflection, Analysis, Shortcomings etc.



Reflection, Analysis, Shortcomings, etc.

Q: Why only (these) four queries?
● Management decision re scope of our work. 
● Sort-of-representative of the gamut of TPC-H queries.
● Our existing design would support all or almost-all of them.

Q: Why CUDA rather than OpenCL?
● Faster to develop with, more convenient and flexible.
● OpenCL had not yet caught up when we started (C++, templates).
● nVIDIA is impeding OpenCL adoption by holding back on 2.x support 

on their cards… despite being members of Khronos. For Shame.



Reflection, Analysis, Shortcomings, etc. 
(cont...)

Q: How come you spend so much time on I/O, and so little on 
Compute?
● Actually the result of a successful coding effort:

at first, it was the other way around.
● A manifestation of the ‘Yin-Yang principle’ [LZ’13].
● The way to really address this issue is compression.

Q: But surely you could at least make the “Compute Only” 
regions overlap the “I/O only”?
● Not really, since these are based on intermediary results.
● Execution in chunks  [BC’12, JHH’16] can help some.
● So can GPU-mapped memory.



Reflection, Analysis, Shortcomings, etc. 
(cont...)

Q: Why did you use low scale factors so much?

A combination of two shortcomings:
● No execution in chunks (so - materializing entire columns)

● Had not yet implemented a slab memory manager.

Q: Can I get the source code?
● No :-( . In fact, it has probably been shelved forever, since our (former) 

group has been sort-of disbanded.
● But you can get me:  I need collaboration to take this approach to the next 

level – with release-quality FOSS code. For now, I’m working at it alone – 
but that’s too slow.

● Some source code from my FOSS efforts already available on request.



E.Rozenberg@cwi.nl

Comments? Questions? Craving some ornate C++?
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