
Overtaking CPU DBMSes with a GPU
in Whole-Query Analytic Processing

Adnan Agbaria
David Minor
Natan Peterfreund
Eyal Rozenberg
Ofer Rosenberg

 - now at Intel

 - now at GE Research

 - now a post-doc at CWI Amsterdam

 - now at QualComm

Motivation

● We all want to put discrete GPUs to work on analytics.
● Lots(!) of proof-of-concept systems in recent years

GPUDB CoGaDB MapD
OmniDB Virginian Ocelot
Galactica Red Fox GPL

● None of these systems exhibits the combination of:
− significant performance boosts,

− for complete queries of varying complexity,

− relative to state-of-the-art analytic CPU-based DBMSes.

Our contributions

1.We present a first proof-of-concept GPU-based query
processing framework exhibiting
− significant performance boosts,

− for a selection of TPC-H queries of varying complexity,

− relative to a state-of-the-art CPU DBMS.

2.We propose a different focus of the effort of squeezing
performance out of discrete GPUs.

3.We indicate clearly-realizable potential for additional speedup.

FOSS

Our system

System architecture

In-memory (column)
storage management

IR optimizer

SQL Parser &
MAL (MonetDB IR) generator

IR optimizer

Parallelism-related IR optimizer
Parallelism-related IR optimizer

… etc. ...
IR optimizer

GDK execution engine
MonetDB IR to our IR

translator

IR optimizer
IR optimizer

AXE heterogeneous
execution engine

In-memory (column)
storage management

Schema column
 preprocessing

Execution Engine

● Targeted at arbitrary data-processing-oriented GPU-utilizing applications.
● Not “domain-specific” knowledge of DBMS; not aware of concepts such as

“tuple”, “table”, “column” etc.
● Supports, among others:

● CPU and GPU execution

● task- and data-level parallelism

● concurrent multi-device execution

● Going into detail would require most of the remaining time we have.
● We even have some results on multi-GPU query execution, but those could

not fit into the paper.
● It still has some “infancy issues”, such over-conservatism in synchronization.

Schema preprocessing

● Generated at DB load time.
● No “cheating” – only producing what’s allowed by TPC-H.
● Scalar precomputed data:

● min, max, mode, maximum multiplicity, support size etc.

● Columnar precomputed data:
● Distinct values in order of appearance

● First and last appearances of all distinct values, etc.

● Not a free lunch: this has a cost in memory footprint.

Let's make a GPU-friendly execution plan!

… for TPC-H Q4:

… without the string column (so that we fit on the slide)

select o_orderpriority,count(*) as order_count
from orders
where o_orderdate >= date '1993-07-01'
and o_orderdate < date '1993-07-01' +

interval '3' month
and exists (

 select * from lineitem
 where l_orderkey = o_orderkey

and l_commitdate < l_receiptdate)
group by o_orderpriority
order by o_orderpriority;

select count(*) as order_count
from orders
where o_orderdate >= date '1993-07-01'
and o_orderdate < date '1993-07-01' +

interval '3' month
and exists (

 select * from lineitem
 where l_orderkey = o_orderkey

and l_commitdate < l_receiptdate)
group by o_orderpriority
order by o_orderpriority;

Intersect

Join

Count

Gather

o_orderpriority

|o_orderpriority|

Count

Between
(sparse, sorted)

GatherGather

o_orderkey

Gather

l_orderkey
LessThan

(sparse, sorted) const o_orderdateconst

l_commitdate l_receiptdate

Initial Plan
obtained from MonetDB

Join

SparseToDense

Count

Gather

o_orderpriority

|o_orderpriority|

Between

const o_orderdateconst

DenseToSparse
(sorted)

Gather

o_orderkey

Gather

l_orderkey
DenseToSparse

(sorted)

LessThan

l_commitdate l_receiptdate

SelectPhase 0:
Sparse ops broken up

Let's make a GPU-friendly execution
plan!

Gather SparseToDense

Count

Gather

o_orderpriority

|o_orderpriority|

Gather

l_orderkey
DenseToSparse

(sorted)

BitwiseAnd

o_orderkey
DenseToSparse

(sorted)

LessThan

l_commitdate l_receiptdate

Between

const o_orderdateconst

SparseToDense

SelectPhase 1:
Semijoin avoidance

Let's make a GPU-friendly execution
plan!

Gather

o_orderkey
DenseToSparse

(sorted)

DenseToSparse
(sorted)

SparseToDense

Count

Gather

o_orderpriority

|o_orderpriority|

Gather

l_orderkey
DenseToSparse

(sorted)

BitwiseAnd

BitwiseAnd

Between

const o_orderdateconst

LessThan

l_commitdate l_receiptdate

SparseToDense

Phase 2:
Prefer filtering via bitmask

Gather

o_orderkey

DenseToSparse
(sorted)

Count

Gather

o_orderpriority

|o_orderpriority|

Gather

l_orderkey
DenseToSparse

(sorted)

BitwiseAnd

BitwiseAnd

Between

const o_orderdateconst

LessThan

l_commitdate l_receiptdate

SparseToDense

Phase 3:
Cleanup – op-then-op-1

Gather

o_orderkey

DenseToSparse
(sorted)

Count

Gather

o_orderpriority

|o_orderpriority|

Gather

l_orderkey
DenseToSparse

(sorted)

BitwiseAnd

Between

const o_orderdateconst

LessThan

l_commitdate l_receiptdate

SparseToDense

Phase 4:
Cleanup – idempotence

Gather

o_orderkey

DenseToSparse
(sorted)

Count

Gather

o_orderpriority

|o_orderpriority|

Select

l_orderkey

BitwiseAnd

Between

const o_orderdateconst

LessThan

l_commitdate l_receiptdate

SparseToDense

Phase 5:
Fusion

Gather

o_orderkey

DenseToSparse
(sorted)

Count

Gather

o_orderpriority

|o_orderpriority|

l_orderkey

ScatterDisjunction

BitwiseAnd

Between

const o_orderdateconst

LessThan

l_commitdate l_receiptdate

Phase 6:
Fusion

Gather

o_orderkey

Count

Select

o_orderpriority

|o_orderpriority|

l_orderkey

ScatterDisjunction

BitwiseAnd

Between

const o_orderdateconst

LessThan

l_commitdate l_receiptdate

Phase 7:
Fusion

Let's make a GPU-friendly execution plan!

Gather

o_orderkey

Count

Select

o_orderpriority

|o_orderpriority|

l_orderkey

ScatterDisjunction

BitwiseAnd

Between

const o_orderdateconst

LessThan

l_commitdate l_receiptdate

Experimental Results

The "Bottom Line" – Plan execution time

● Caveat: Not the latest MonetDB (v11.15.11 vs v11.23.7)
● These figures are somewhat misleading. Let's have a closer look...

Q1 Q4 Q9 Q21
0

50

100

150

200

250

159.4

54

125.9

217.5

41.9
24.5 31.125.8 18.4 21.5

44

MonetDB AXE CPU AXE GPU

m
ill

is
ec

on
ds

Query processing time breakdown

MonetDB AXE CPU AXE GPU MonetDB AXE CPU AXE GPU MonetDB AXE CPU AXE GPU MonetDB AXE GPU
Q01 Q04 Q09 Q21

0

25

50

75

100

125

150

175

200

MonetDB Optimizers Our transformations CPU Total GPU total

+217.5

Q01

Q04

Q09

Q21

54%54%

84%84%

69%69%

64%64%

24%24%

4%4%

9%9%

9%9%

22%22%

2%2%

3%3%

6%6%

1%1%

10%10%

20%20%

21%21%

Idle Compute Compute+I/O I/O Only

GPU Compute/IO activity breakdown

● The Dreaded PCIe bandwidth bottleneck rears its ugly head… ~12 GB/sec
● Pipelining/chunking initial operations would often not ameliorate this.
● Idle time - mostly artifacts of our implementation which could go away.

Except for the "muscular" Q1,
the GPU is doing work only for
6%-15% of the total time

Except for the "muscular" Q1,
the GPU is doing work only for
6%-15% of the total time

GPU Compute Time Breakdown

Top 6 time-consuming computational kernel categories (durations in msec)

Reduce by Index

Histogram

Gather

Dense to Sparse

(elementwise arithmetic)

Combine Index Columns

0.0 2.0 4.0 6.0 8.0 10.0

7.8

3.3

1.8

1.6

1.4

0.3

RHS-Unique Join

Dense to Sparse sorted

Elementwise Compare

Gather

Select

Histogram

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.0

0.8

0.4

0.3

0.0

0.0

Gather

Foreign Key Join

Substring Search

Select Indices

Reduce by Index

(elementwise arithmetic)

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

2.4

1.1

0.8

0.3

0.1

0.1

RHS-Unique Join

Gather

Select Indices Sorted

Self-Join

Get Occurrence Statistics

(elementwise comparison)

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

2.5

1.4

1.0

0.6

0.4

0.3

Q1

Q9

Q4

Q21

Can be optimized away
in favor of a Gather, a weird op
(ScatterDisjunction) and
elementwise logical ops.

Can be optimized away
in favor of a Gather, a weird op
(ScatterDisjunction) and
elementwise logical ops.

SF 1

SF 2

SF 4

SF 8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MonetDB optimizers Our transformations GPU I/O GPU I/O+Compute
GPU Compute GPU Idle Overhead

Effect of scaling on query processing time
breakdown

Chart regards TPC-H Q4.

Reflection, Analysis, Shortcomings etc.

Reflection, Analysis, Shortcomings, etc.

Q: Why only (these) four queries?
● Management decision re scope of our work.
● Sort-of-representative of the gamut of TPC-H queries.
● Our existing design would support all or almost-all of them.

Q: Why CUDA rather than OpenCL?
● Faster to develop with, more convenient and flexible.
● OpenCL had not yet caught up when we started (C++, templates).
● nVIDIA is impeding OpenCL adoption by holding back on 2.x support

on their cards… despite being members of Khronos. For Shame.

Reflection, Analysis, Shortcomings, etc.
(cont...)

Q: How come you spend so much time on I/O, and so little on
Compute?
● Actually the result of a successful coding effort:

at first, it was the other way around.
● A manifestation of the ‘Yin-Yang principle’ [LZ’13].
● The way to really address this issue is compression.

Q: But surely you could at least make the “Compute Only”
regions overlap the “I/O only”?
● Not really, since these are based on intermediary results.
● Execution in chunks [BC’12, JHH’16] can help some.
● So can GPU-mapped memory.

Reflection, Analysis, Shortcomings, etc.
(cont...)

Q: Why did you use low scale factors so much?

A combination of two shortcomings:
● No execution in chunks (so - materializing entire columns)

● Had not yet implemented a slab memory manager.

Q: Can I get the source code?
● No :-(. In fact, it has probably been shelved forever, since our (former)

group has been sort-of disbanded.
● But you can get me: I need collaboration to take this approach to the next

level – with release-quality FOSS code. For now, I’m working at it alone –
but that’s too slow.

● Some source code from my FOSS efforts already available on request.

E.Rozenberg@cwi.nl

Comments? Questions? Craving some ornate C++?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

