LSM-Trees Under (Memory) Pressure

Ju Hyoung Mun, Zichen Zhu, Aneesh Raman, Manos Athanassoulis
jmun@bu.edu, zczhu@bu.edu, aneeshr@bu.edu, mathan@bu.edu

presentation at ADMS 2022
Log-Structured Merge Trees

Widely adopted because they balance read performance and ingestion

- RocksDB
- DynamoDB
- HBase
- WT
- levelDB
- cassandra
Log-Structured Merge Trees

buffer

L1
L2
L3
Log-Structured Merge Trees
Log-Structured Merge Trees

buffer

L1
L2
L3

size ratio = T

exponentially larger capacity
Log-Structured Merge Trees

Buffer

L1

L2

L3

Organized in SST files
Log-Structured Merge Trees

Buffer

Filter and index blocks to enhance the lookup performance
Log-Structured Merge Trees

get\(k\)

buffer

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

Block Cache

L1

L2

L3

get(k)
Log-Structured Merge Trees

get(k)

buffer

F_{1,1}?

Block Cache

L1

L2

L3
Log-Structured Merge Trees

get(k)

buffer

Block Cache

L1

L2

L3

F_{1,1}?
Log-Structured Merge Trees

get(k)

buffer

Block Cache

$F_{1,1}$

$L1$

$L2$

$L3$

k
Log-Structured Merge Trees

get(k) → Buffer → Block Cache → L1 → L2 → L3

$F_{1,1}$
Log-Structured Merge Trees

get(k)
Log-Structured Merge Trees

get\((k) \)

buffer

Block Cache

\[F_{1,1} \]

\[F_{2,2} \]

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

F_{2,2}?

Block Cache

F_{1,1}

L1

L2

k

L3
Log-Structured Merge Trees

get(k) F_{2,2}? Block Cache
buffer → F_{1,1} → L1 → L2 → L3
Log-Structured Merge Trees

get\((k) \)

buffer

Block Cache

\(F_{1,1} \)

\(F_{2,2} \)

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

Block Cache

F$_{1,1}$ F$_{2,2}$

L1

L2

L3

$F_{1,1}$ $F_{2,2}$
Log-Structured Merge Trees

get(k)

buffer

Block Cache

F\textsubscript{1,1} F\textsubscript{2,2}

L1

L2

L3

k
Log-Structured Merge Trees

get\((k) \)

buffer

Block Cache

L1

L2

L3

\(I_{2,2} ? \)
Log-Structured Merge Trees

get(k)

buffer

Block Cache

L1

L2

L3

$F_{1,1}$ $F_{2,2}$

k

I$_{2,2}$?
Log-Structured Merge Trees

```
get(k)

buffer

Block Cache

F_1,1  F_2,2

I_2,2?

L1

L2

L3
```

I_2,2
Log-Structured Merge Trees

get(k)

buffer

Block Cache

$F_{1,1}$ $F_{2,2}$ $L_{2,2}$

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

Block Cache

L1

L2

L3

F_{1,1} F_{2,2} I_{2,2}

D_{2,2,1}

k
Log-Structured Merge Trees

buffer

get\((k)\)

Block Cache

F_{1,1} F_{2,2} I_{2,2}

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

D$_{2,2,1}$?

Block Cache

F$_{1,1}$ F$_{2,2}$ I$_{2,2}$

L1

L2

L3

k
Log-Structured Merge Trees

get\((k) \)

buffer

\[D_{2,2,1} \]

Block Cache

\[F_{1,1}, F_{2,2}, I_{2,2} \]

L1

L2

L3

get\((k) \)

buffer

\[D_{2,2,1} \]

Block Cache

\[F_{1,1}, F_{2,2}, I_{2,2} \]

L1

L2

L3

get\((k) \)

buffer

\[D_{2,2,1} \]

Block Cache

\[F_{1,1}, F_{2,2}, I_{2,2} \]

L1

L2

L3
Log-Structured Merge Trees

buffer

get(k)

D_{2,2,1}? Block Cache

F_{1,1} F_{2,2} I_{2,2}

L1

L2

L3

D_{2,2,1}
Log-Structured Merge Trees

buffer

get(k)

Block Cache

L1

L2

L3

$F_{1,1}$ $F_{2,2}$ $I_{2,2}$ $D_{2,2,1}$
Log-Structured Merge Trees

get\(k\)

buffer

Block Cache

\(F_{1,1}, F_{2,2}, I_{2,2}, D_{2,2,1}\)

L1

L2

L3

k
Log-Structured Merge Trees

get\(k\) → buffer

Block Cache: \(F_{1,1}, F_{2,2}, I_{2,2}, D_{2,2,1}\)

L1
L2: \(k\)
L3
Log-Structured Merge Trees

get(x)

buffer

F_{1,1}?

Block Cache

L1

L2

L3

F_{1,1}, F_{2,2}, I_{2,2}, D_{2,2,1}

F_{1,1}, x

...
Log-Structured Merge Trees

get(x) -> Buffer

Block Cache: \(F_{1,1} \), \(F_{2,2} \), \(I_{2,2} \), \(D_{2,2,1} \)

L1
L2
L3

34
Log-Structured Merge Trees

`get(x)`

Buffer

Block Cache

L1

L2

L3
Log-Structured Merge Trees

```
get(x)
buffer  F_{2,2}?
```

Block Cache

```
F_{1,1}  F_{2,2}  I_{2,2}  D_{2,2,1}
```
get(x) \\

buffer

Block Cache

$F_{1,1}$ $F_{2,2}$ $I_{2,2}$ $D_{2,2,1}$

$L1$ \\
$L2$ \\
$L3$
Log-Structured Merge Trees

get(x)

buffer

Block Cache

L1

L2

L3
Log-Structured Merge Trees

get(x)

buffer

Block Cache

L1

L2

L3

F_{1,1} F_{2,2} I_{2,2} D_{2,2,1}

I_{2,2}?
Log-Structured Merge Trees

Buffer

get(x)

Block Cache

F_{1,1} F_{2,2} I_{2,2} D_{2,2,1}

L1

L2

L3
Log-Structured Merge Trees

get(x)

buffer

I_{2,2}? Block Cache

F_{1,1} F_{2,2} I_{2,2} D_{2,2,1}

D_{2,2,2}

L1

L2

L3
Log-Structured Merge Trees

buffer

get(x)

D_{2,2,2}?

Block Cache

\[
\begin{array}{c}
F_{1,1} & F_{2,2} & I_{2,2} & D_{2,2,1} \\
\times & & \checkmark & \checkmark \\
\end{array}
\]

L1

L2

L3

x
Log-Structured Merge Trees

get(x)

buffer

D_{2,2,2}?

Block Cache

F_{1,1} F_{2,2} I_{2,2} D_{2,2,1}

L1

L2

L3
Log-Structured Merge Trees

get(x)

buffer

Block Cache

F_{1,1} F_{2,2} I_{2,2} D_{2,2,1}

L1

L2

L3

D_{2,2,2}
Log-Structured Merge Trees

get(x)

Block Cache

buffer

L1

L2

L3
Log-Structured Merge Trees

get(x)

buffer

Block Cache

L1

L2

L3
Log-Structured Merge Trees

get(\(x\))

buffer

\(x?\)

Block Cache

L1

L2

L3

get(\(x\))
Log-Structured Merge Trees

buffer

get(x)

Block Cache

L1

L2

L3

get(x)
Can we always keep useful block in block cache?
Memory Pressure in LSM-trees
Memory vs. Storage

The Five-Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy, Communications of the ACM, 2019

<table>
<thead>
<tr>
<th>Metric</th>
<th>DRAM</th>
<th></th>
<th></th>
<th></th>
<th>HDD</th>
<th></th>
<th></th>
<th></th>
<th>SATAFlash SSD</th>
<th>2007</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price ($)</td>
<td>5k</td>
<td>15k</td>
<td>48</td>
<td>80</td>
<td>30k</td>
<td>2k</td>
<td>80</td>
<td>49</td>
<td>1k</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>Unit capacity</td>
<td>1MB</td>
<td>1GB</td>
<td>1GB</td>
<td>16GB</td>
<td>180MB</td>
<td>9GB</td>
<td>250GB</td>
<td>2TB</td>
<td>32GB</td>
<td>800GB</td>
<td></td>
</tr>
<tr>
<td>$/MB</td>
<td>5k</td>
<td>14.6</td>
<td>0.05</td>
<td>0.005</td>
<td>83.33</td>
<td>0.22</td>
<td>0.0003</td>
<td>0.00002</td>
<td>0.03</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Random IOPS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>64</td>
<td>83</td>
<td>200</td>
<td>6.2k</td>
<td>67k (r)/20k (w)</td>
<td></td>
</tr>
<tr>
<td>Sequential b/w (MB/s)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>10</td>
<td>300</td>
<td>200</td>
<td>66</td>
<td>500 (r)/460 (w)</td>
<td></td>
</tr>
</tbody>
</table>
Memory vs. Storage

The Five-Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy, Communications of the ACM, 2019

<table>
<thead>
<tr>
<th>Metric</th>
<th>DRAM</th>
<th>HDD</th>
<th>SATAFlash SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price ($)</td>
<td>5k</td>
<td>15k</td>
<td>48</td>
</tr>
<tr>
<td>Unit capacity</td>
<td>1MB</td>
<td>1GB</td>
<td>1GB</td>
</tr>
<tr>
<td>$/MB</td>
<td>5k</td>
<td>14.6</td>
<td>0.05</td>
</tr>
<tr>
<td>Random IOPS</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sequential b/w (MB/s)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Memory vs. Storage

The price drop in memory has been slower than storage

<table>
<thead>
<tr>
<th>Metric</th>
<th>DRAM</th>
<th></th>
<th></th>
<th></th>
<th>HDD</th>
<th></th>
<th></th>
<th></th>
<th>SATAFlash SSD</th>
<th></th>
<th>2007</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price ($)</td>
<td>5k</td>
<td>15k</td>
<td>48</td>
<td>80</td>
<td>30k</td>
<td>2k</td>
<td>80</td>
<td>49</td>
<td>1k</td>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit capacity</td>
<td>1MB</td>
<td>1GB</td>
<td>1GB</td>
<td>16GB</td>
<td>180MB</td>
<td>9GB</td>
<td>250GB</td>
<td>2TB</td>
<td>32GB</td>
<td>800GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/MB</td>
<td>5k</td>
<td>14.6</td>
<td>0.05</td>
<td>0.005</td>
<td>83.33</td>
<td>0.22</td>
<td>0.0003</td>
<td>0.00002</td>
<td>0.03</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random IOPS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>64</td>
<td>83</td>
<td>200</td>
<td>6.2k</td>
<td>67k (r)/20k (w)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequential b/w (MB/s)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>10</td>
<td>300</td>
<td>200</td>
<td>66</td>
<td>500 (r)/460 (w)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Five-Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy, Communications of the ACM, 2019
Memory vs. Storage

<table>
<thead>
<tr>
<th>Metric</th>
<th>DRAM</th>
<th></th>
<th></th>
<th></th>
<th>HDD</th>
<th></th>
<th></th>
<th></th>
<th>SATAFlash SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price($)</td>
<td>5k</td>
<td>15k</td>
<td>48</td>
<td>80</td>
<td>30k</td>
<td>2k</td>
<td>80</td>
<td>49</td>
<td>1k</td>
</tr>
<tr>
<td>Unit capacity</td>
<td>1MB</td>
<td>1GB</td>
<td>1GB</td>
<td>16GB</td>
<td>180MB</td>
<td>9GB</td>
<td>250GB</td>
<td>2TB</td>
<td>32GB</td>
</tr>
<tr>
<td>$/MB</td>
<td>5k</td>
<td>14.6</td>
<td>0.05</td>
<td>0.005</td>
<td>83.33</td>
<td>0.22</td>
<td>0.0003</td>
<td>0.00002</td>
<td>0.03</td>
</tr>
<tr>
<td>Random IOPS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>64</td>
<td>83</td>
<td>200</td>
<td>6.2k</td>
</tr>
<tr>
<td>Sequential b/w (MB/s)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>10</td>
<td>300</td>
<td>200</td>
<td>66</td>
</tr>
</tbody>
</table>

The Five-Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy, Communications of the ACM, 2019

The price drop in memory has been slower than storage making it hard to maintain the same memory-to-data ratio
Memory Pressure in LSM-trees
Memory Pressure in LSM-trees

Data size ↑
Memory Pressure in LSM-trees

For 1TB data,
1.3GB filter & 17.2GB index
11% space amplification,
1KB entry, 64B key, bpk 10
Memory Pressure in LSM-trees

For 1TB data, 1.3GB filter & 17.2GB index
11% space amplification,
1KB entry, 64B key, bpk 10
Memory Pressure in LSM-trees

For 1TB data, 1.3GB filter & 17.2GB index
11% space amplification, 1KB entry, 64B key, bpk 10

Size of each block increases
Memory Pressure in LSM-trees

For 1TB data, 1.3GB filter & 17.2GB index
11% space amplification,
1KB entry, 64B key, bpk 10

Size of each block increases
Memory Pressure in LSM-trees

For 1TB data, 1.3GB filter & 17.2GB index
11% space amplification, 1KB entry, 64B key, bpk 10

Size of each block increases

Memory pressure
Lookup cost under memory pressure
Lookup cost under memory pressure

![Graph showing the relationship between memory budget and read bytes/lookup (KB). The graph indicates a decrease in read bytes as the memory budget increases.]
Lookup cost under memory pressure

![Graph showing the relationship between read bytes/lookup (KB) and memory budget (%). The graph shows a downward trend with memory pressure, indicating a decrease in read bytes/lookup as the memory budget increases. Key points on the graph include:

- At 10% memory budget, the read bytes/lookup is approximately 250 KB.
- At 40% memory budget, the read bytes/lookup is approximately 7.3x lower than at 10%.
- At 70% memory budget, the read bytes/lookup is approximately 1.4x lower than at 40%.
- At 100% memory budget, the read bytes/lookup is approximately 1x lower than at 70%.

The graph visually demonstrates the efficiency gain in read operations as the memory budget increases under memory pressure.]
Lookup cost under memory pressure

As the available memory decreases, the read bytes per query increase rapidly.
Are all filter blocks equally important?

State-of-the-art LSM designs treat all BFs equally
Access Frequency Patterns

![CDF graph with different access frequency patterns]

- **Uniform**
- **Normal (low skew)**
- **Normal (high skew)**
- **YCSB (Uniform)**

SST files (descending order of access frequency)
Access Frequency Patterns

![Access Frequency Patterns Graph]

- **CDF**
- **# SST files (descending order of access frequency)**

- **Uniform**
- **Normal (low skew)**
- **Normal (high skew)**
- **YCSB (Uniform)**
Even in a perfectly uniform workload, 80% of the lookups are directed to 44~46% of the SST files.
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

y?
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

$h_1(y)$

y?
Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

$h_1(y)$
$h_2(y)$
$h_3(y)$

m-bit vector
Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes

y?

positive

$h_1(y)$

$h_2(y)$

$h_3(y)$

m-bit vector
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

\[h_i(y) \]

Always access all k indexes for positive queries
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

x?
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

\[x \]

\[h_1(x) \]
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

x?

$h_1(x)$

$h_2(x)$

m-bit vector
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

x? negative
Bloom Filter

m-bit vector
n elements are store
k hash indexes

x? negative

Is the entire filter useful?
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

\[h_1(x) \]
\[h_2(x) \]

\[\text{probes}_{\text{empty}} = 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}} \]
Bloom Filter

An m-bit vector contains n elements, and k hash indexes are used. The probability of a successful probe is calculated as follows:

\[\text{probes}_{\text{empty}} = 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}} \]
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

$h_1(x)$
$h_2(x)$

x? negative

$probes_{empty} = 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}}$
Bloom Filter

m-bit vector
n elements are stored
k hash indexes

x?

negative

\[
\text{probes}_{\text{empty}} = 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}}
\]
Bloom Filter

m-bit vector

n elements are stored

k hash indexes

$x? \quad \text{negative}$

\[
\begin{align*}
\text{probes}_{\text{empty}} &= 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{k-1}} \\
&= \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}}
\end{align*}
\]
Bloom Filter

An m-bit vector
n elements are stored
k hash indexes

$h_1(x)$
$h_2(x)$

$x_? \text{ negative}

probes_{empty} = 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}}$

for all k hash indexes
Bloom Filter

m-bit vector

n elements are stored

k hash indexes

\[h_1(x) \]

\[h_2(x) \]

\[x? \text{ negative} \]

\[\text{probes}_{\text{empty}} = 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}} \]
Modular Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
- d modules
Modular Bloom Filter

m-bit vector
n elements are stored
k hash indexes
d modules

An MBF is a collection of D Bloom filters
Modular Bloom Filter

m-bit vector
n elements are stored
k hash indexes
d modules

An MBF is a collection of D Bloom filters
- m_d-bit vector
- n elements
- k_d hash indexes
Modular Bloom Filter

- m-bit vector
- n elements are store
- k hash indexes
- d modules

x?
Modular Bloom Filter

m-bit vector
n elements are stored
k hash indexes
d modules

$h_1(x)$

x?
Modular Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
- d modules

$h_1(x)$
$h_2(x)$

module #1
module #2
module #3
Modular Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
- d modules

x? negative

$h_1(x)$
$h_2(x)$

module #1
module #2
module #3
Modular Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
- d modules

y?

$h_1(y)$

$h_2(y)$

$h_3(y)$

Module #1

Module #2

Module #3
Modular Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
- d modules

For y: positive

$h_1(y)$

$h_2(y)$

$h_3(y)$

module #1 module #2 module #3
Modular Bloom Filter

False positive rate

![Diagram showing the false positive rate for different numbers of modules. The graph indicates that the false positive rate remains relatively constant across various numbers of modules.]
Modular Bloom Filter

False positive rate

FPR close-to-theoretical
Modular Bloom Filter

False positive rate

FPR close-to-theoretical

Avg. # of module accesses
Modular Bloom Filter

False positive rate

FPR close-to-theoretical

Avg. # of module accesses vs. Avg. size accessed
Modular Bloom Filter

False positive rate

FPR close-to-theoretical

Avg. # of module accesses vs. Avg. size accessed

Less space requirement
Modular Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
- d modules

y?

Positive

$h_1(y)$

$h_2(y)$

$h_3(y)$
Modular Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
- d modules

y? positive

$h_1(y)$
$h_2(y)$
$h_3(y)$

Module #1 Module #2 Module #3

MBFs are not useful for positive queries.
Modular Bloom Filter

- m-bit vector
- n elements are stored
- k hash indexes
- d modules

y? positive

$h_1(y)$

$h_2(y)$

$h_3(y)$

MBFs are not useful for positive queries.

What if we know something more about the queries?
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \exp IO_{l,i,d} - \exp IO_{l,i,d-1} \]
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \exp IO_{l,i,d} - \exp IO_{l,i,d-1} \]

The expected number of I/Os that can be reduced by using \(d \)-th module
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \text{exp}I/O_{l,i,d} - \text{exp}I/O_{l,i,d-1} \]

The expected number of I/Os that can be reduced by using \(d\)-th module

Expected number of I/Os

\[\text{exp}I/O_{l,i,d} = \beta_{l,i} \cdot (\alpha_{l,i} + (1 - \alpha_{l,i}) \cdot f_{sm}^d) \]

- \(l\)-th level
- \(i\)-th SST file
- \(d\)-th module
- \(f_{sm}\): FPR of a single module
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \exp I/O_{l,i,d} - \exp I/O_{l,i,d-1} \]

The expected number of I/Os that can be reduced by using the \(d \)-th module

Expected number of I/Os

\[\exp I/O_{l,i,d} = \beta_{l,i} \cdot (\alpha_{l,i} + (1 - \alpha_{l,i}) \cdot f_{sm}^{d}) \]

\(l \)-th level
\(i \)-th SST file
\(d \)-th module

\(f_{sm} \): FPR of a single module
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \exp I/O_{l,i,d} - \exp I/O_{l,i,d-1} \]

The expected number of I/Os that can be reduced by using \(d \)-th module

Expected number of I/Os

\[\exp I/O_{l,i,d} = \beta_{l,i} \cdot (\alpha_{l,i} + (1 - \alpha_{l,i}) \cdot f_s^d) \]

- \(l \)-th level
- \(i \)-th SST file
- \(d \)-th module
- \(f_s^d \): FPR of a single module
- non-empty queries
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \exp IO_{l,i,d} - \exp IO_{l,i,d-1} \]

The expected number of I/Os that can be reduced by using \(d \)-th module

Expected number of I/Os

\[\exp IO_{l,i,d} = \beta_{l,i} \cdot (\alpha_{l,i} + (1 - \alpha_{l,i}) \cdot f_{sm}^d) \]

- \(l \)-th level
- \(i \)-th SST file
- \(d \)-th module
- \(f_{sm} \): FPR of a single module
- non-empty queries
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \exp I/O_{l,i,d} - \exp I/O_{l,i,d-1} \]

The expected number of I/Os that can be reduced by using \(d \)-th module

Expected number of I/Os

\[\exp I/O_{l,i,d} = \beta_{l,i} \cdot \left(\alpha_{l,i} + (1 - \alpha_{l,i}) \cdot f_{sm}^d \right) \]

- \(\beta_{l,i} \): FPR of a single module on non-empty queries
- \(\alpha_{l,i} \): FPR of a single module on empty queries
- \(f_{sm}^d \): FPR of a single module
- \(l \)-th level
- \(i \)-th SST file
- \(d \)-th module
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \exp IO_{l,i,d} - \exp IO_{l,i,d-1} \]

The expected number of I/Os that can be reduced by using the \(d \)-th module

Expected number of I/Os

\[\exp IO_{l,i,d} = \beta_{l,i} \cdot \left(\alpha_{l,i} + \left(1 - \alpha_{l,i} \right) \cdot f_{sm}^d \right) \]

- \(\beta_{l,i} \) : FPR of a single module
- \(\alpha_{l,i} \) : FPR of a non-empty query
- \(f_{sm}^d \) : FPR of a module
- \(l \)-th level
- \(i \)-th SST file
- \(d \)-th module
- \(f_{sm} \) : FPR of a single module
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[u_{l,i,d} = \exp IO_{l,i,d} - \exp IO_{l,i,d-1} \]

The expected number of I/Os that can be reduced by using \(d \)-th module

Expected number of I/Os

\[\exp IO_{l,i,d} = \beta_{l,i} \cdot (\alpha_{l,i} + (1 - \alpha_{l,i}) \cdot f_{sm}^d) \]

- \(\beta_{l,i} \): access frequency
- \(\alpha_{l,i} \): non-empty queries
- \(f_{sm} \): FPR of a single module
- \(l \)-th level
- \(i \)-th SST file
- \(d \)-th module
- \(\exp IO_{l,i,d} \): false positives from empty queries
Skipping Modules

Utility: a measure of the benefit of a filter or a module

\[
\mathcal{U}_l,i,d = \exp IO_{l,i,d} - \exp IO_{l,i,d-1}
\]

The expected number of I/Os that can be reduced by using \(d\)-th module

\[
\exp IO_{l,i,d} = \beta_{l,i} \cdot \left(\alpha_{l,i} + (1 - \alpha_{l,i}) \cdot f_{d} \right)
\]

Utility is high if file is frequently accessed, or queries are empty
Skipping Modules

Skipping Modules based on their utilities
Skipping Modules

Skipping Modules based on their utilities

\[u_{l,i,d} = \expIO(l,i,d) - \expIO(l,i,d-1) \]

if \(u_{l,i,d} < \text{threshold}_d \) then
 return true

else
 result = QueryModule(key, module_{l,i,d})
Skipping Modules

Skipping Modules based on their utilities

\[u_{l,i,d} = \expIO(l,i,d) - \expIO(l,i,d-1) \quad // \text{calc module's utility} \]

if \(u_{l,i,d} < \text{threshold}_d \) then
 return true

else
 result = QueryModule(key, module_{l,i,d})
Skipping Modules based on their utilities

\[u_{l,i,d} = \expIO(l,i,d) - \expIO(l,i,d-1) \quad // \text{calc module’s utility} \]

\[
\text{if } u_{l,i,d} < \text{threshold}_d \text{ then } // \text{skip module when there’s no benefit} \\
\text{return } \text{true}
\]

\[
\text{else} \\
\text{result} = \text{QueryModule(key, module}_{l,i,d})
\]
Skipping Modules

Skipping Modules based on their utilities

\[u_{l,i,d} = \expIO(l,i,d) - \expIO(l,i,d-1) \] // calc module's utility

if \(u_{l,i,d} < \text{threshold}_d \) then // skip module when there's no benefit
 return true

else // otherwise, keep querying modules
 result = QueryModule(key, module_{l,i,d})
Modular Bloom filter & Skipping Algorithm & Sharing Hashing + LSM-tree
Modular Bloom filter & Skipping Algorithm & Sharing Hashing + LSM-tree

Sharing Hashing with Modular Bloom filters (SHaMBa)
Experimental Evaluation
Experiment Settings

LSM-tree tuning

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>64</td>
<td>entry size (B)</td>
</tr>
<tr>
<td>K</td>
<td>32</td>
<td>key size (B)</td>
</tr>
<tr>
<td>B</td>
<td>64</td>
<td>block size (#entries)</td>
</tr>
<tr>
<td>P</td>
<td>1024</td>
<td>buffer size/file size (#blocks)</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>size ratio</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
<td>bits per key for filters</td>
</tr>
</tbody>
</table>

Size of blocks

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_D</td>
<td>4</td>
<td>data block size (KB)</td>
</tr>
<tr>
<td>S_I</td>
<td>32</td>
<td>index block size (KB)</td>
</tr>
<tr>
<td>S_F</td>
<td>80</td>
<td>filter block size (KB)</td>
</tr>
</tbody>
</table>
Approaches Tested

<table>
<thead>
<tr>
<th>Tuning knobs of SHaMBa</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of modules</td>
<td>1, 2, 3, or 7</td>
</tr>
<tr>
<td>Size of each module</td>
<td>equal or proportional</td>
</tr>
<tr>
<td>skipping algorithm</td>
<td>none, partial (P), or full (F)</td>
</tr>
</tbody>
</table>

Approaches Tested

- state-of-the-art
- SHaMBa-eq
- SHaMBa-eq-P
- SHaMBa-eq-F
- SHaMBa-prop
- SHaMBa-prop-P
- SHaMBa-prop-F
Approaches Tested

<table>
<thead>
<tr>
<th>Tuning knobs of SHaMBa</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of modules</td>
<td>1, 2, 3, or 7</td>
</tr>
<tr>
<td>Size of each module</td>
<td>equal or proportional</td>
</tr>
<tr>
<td>skipping algorithm</td>
<td>none, partial (P), or full (F)</td>
</tr>
</tbody>
</table>

Approaches Tested

- **state-of-the-art**
 - \(\text{SHaMBa-eq} \)
 - \(\text{SHaMBa-eq-P} \)
 - \(\text{SHaMBa-eq-F} \)
- **SHaMBa-prop**
 - \(\text{SHaMBa-prop-P} \)
 - \(\text{SHaMBa-prop-F} \)
Approaches Tested

<table>
<thead>
<tr>
<th>Tuning knobs of SHaMBa</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of modules</td>
<td>1, 2, 3, or 7</td>
</tr>
<tr>
<td>Size of each module</td>
<td>equal or proportional</td>
</tr>
<tr>
<td>skipping algorithm</td>
<td>none, partial (P), or full (F)</td>
</tr>
</tbody>
</table>

Approaches Tested

- **state-of-the-art**
- **SHaMBa-eq**
- **SHaMBa-eq-P**
- **SHaMBa-eq-F**
- **SHaMBa-prop**
- **SHaMBa-prop-P**
- **SHaMBa-prop-F**
Approaches Tested

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of modules</td>
<td>1, 2, 3, or 7</td>
</tr>
<tr>
<td>Size of each module</td>
<td>equal or proportional</td>
</tr>
<tr>
<td>skipping algorithm</td>
<td>none, partial (P), or full (F)</td>
</tr>
</tbody>
</table>

- state-of-the-art
- SHaMBa-eq
- SHaMBa-eq-P
- SHaMBa-eq-Ф
- SHaMBa-prop
- SHaMBa-prop-P
- SHaMBa-prop-Ф
Approaches Tested

Tuning knobs of SHaMBa

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of modules</td>
<td>1, 2, 3, or 7</td>
</tr>
<tr>
<td>Size of each module</td>
<td>equal or proportional</td>
</tr>
<tr>
<td>skipping algorithm</td>
<td>none, partial (P), or full (F)</td>
</tr>
</tbody>
</table>

Approaches Tested

- state-of-the-art
- SHaMBa-eq
- SHaMBa-eq-P
- SHaMBa-eq-F
- SHaMBa-prop
- SHaMBa-prop-P
- SHaMBa-prop-F
Approaches Tested

Tuning knobs of SHaMBa

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of modules</td>
<td>1, 2, 3, or 7</td>
</tr>
<tr>
<td>Size of each module</td>
<td>equal or proportional</td>
</tr>
<tr>
<td>skipping algorithm</td>
<td>none, partial (P), or full (F)</td>
</tr>
</tbody>
</table>

Approaches Tested

- *state-of-the-art*
- *SHaMBa-eq*
- *SHaMBa-eq-P*
- *SHaMBa-eq-F*
- *SHaMBa-prop*
- *SHaMBa-prop-P*
- *SHaMBa-prop-F*
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: no skipping algorithm, equal sized modules

[Graphs showing the impact of memory budget on I/O per lookup for different numbers of modules.]

- **State-of-art**
- 2 modules
- 3 modules
- 7 modules

Memory budget (%):
- 0
- 20
- 40
- 60
- 80
- 100
- 120
- 140
- 160
- 180

I/O per lookup:
- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90

Cases:
- All empty
- Half empty
- All non-empty
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: no skipping algorithm, equal sized modules

- state-of-art
- 2 modules
- 3 modules
- 7 modules
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: no skipping algorithm, equal sized modules

- state-of-art
- 2 modules
- 3 modules
- 7 modules

I/O per lookup vs Memory budget (%)

- all empty
- half empty
- all non-empty
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: no skipping algorithm, equal sized modules

![Graph showing impact of number of modules on I/O per lookup with different memory budgets.](image)
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: no skipping algorithm, equal sized modules

SHaMBa enhances the lookup performance for empty queries
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: no skipping algorithm, equal sized modules

- blue line: state-of-art
- x-x-x line: 2 modules
- -o-o line: 3 modules
- -o-o line: 7 modules

Graphs show the impact of memory budget (%) on I/O per lookup for different module configurations:
- all empty
- half empty
- all non-empty
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: no skipping algorithm, equal sized modules

SHaMBa Performs Best with Smaller Modules
Impact of number of modules

% of empty queries terminated

Fraction of MBF accessed

0 1

1 modules
Impact of number of modules

![Graph showing the impact of number of modules on the fraction of MBF accessed. The graph compares 1 module (solid line) and 2 modules (dotted line). The x-axis represents the fraction of MBF accessed, ranging from 0 to 1. The y-axis represents the percentage of empty queries terminated, ranging from 0% to 100%. The graph shows that as the fraction of MBF accessed increases, the percentage of empty queries terminated also increases. For 1 module, the percentage remains close to 100% across all fractions of MBF accessed, while for 2 modules, the percentage starts at around 60% and increases as the fraction of MBF accessed increases.](image-url)
Impact of number of modules
Impact of number of modules

![Graph showing the impact of number of modules on the percentage of empty queries terminated.](image)
Impact of number of modules

Smaller modules are more beneficial
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: full skipping algorithm, equal sized modules

- state-of-art
- 2 modules
- 3 modules
- 7 modules

<table>
<thead>
<tr>
<th>Memory budget (%)</th>
<th>I/O per lookup</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

- all empty
- half empty
- all non-empty
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: **full skipping algorithm**, equal sized modules

![Graphs showing I/O per lookup vs. Memory budget for different numbers of modules: all empty, half empty, all non-empty.](image_url)
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: full skipping algorithm, equal sized modules

- state-of-art
- 2 modules
- 3 modules
- 7 modules

Impact of number of modules

<table>
<thead>
<tr>
<th>Memory budget (%)</th>
<th>I/O per lookup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>all empty</td>
</tr>
<tr>
<td></td>
<td>half empty</td>
</tr>
<tr>
<td></td>
<td>all non-empty</td>
</tr>
</tbody>
</table>

144
Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: full skipping algorithm, equal sized modules

Impact of number of modules
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: full skipping algorithm, equal sized modules

Skipping modules reduces the impact of the number of the modules.
Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: full skipping algorithm, equal sized modules

Skipping modules reduces the impact of the number of the modules
SHaMBa with Partitioned Index/Filter

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 equal sized modules

- partitioned
- partitioned + SHaMBa-eq
- partitioned + SHaMBa-eq-P
- partitioned + SHaMBa-eq-F

all empty
half empty
all non-empty
SHaMBA with Partitioned Index/Filter

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 equal sized modules

- partitioned
dashed: partitioned + SHaMBA-eq
dotted: partitioned + SHaMBA-eq-P
dash-dotted: partitioned + SHaMBA-eq-F
SHaMBa with Partitioned Index/Filter

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 equal sized modules

SHaMBa boosts partitioned index/filter under severe memory pressure
SHaMBa with Monkey

Monkey allocates more bits per element in the shallower levels to aggressively reduce their false positives

Monkey: Optimal Navigable Key-Value Store, ACM SIGMOD 2022

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 equal sized modules
SHaMBa with Monkey

Monkey allocates more bits per element in the shallower levels to aggressively reduce their false positives

Monkey: Optimal Navigable Key-Value Store, ACM SIGMOD 2022

Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: 2 equal sized modules
SHaMBa with Monkey

Monkey allocates more bits per element in the shallower levels to aggressively reduce their false positives

Monkey: Optimal Navigable Key-Value Store, ACM SIGMOD 2022

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 equal sized modules

SHaMBa further improves performance of Monkey
SHaMBa-eq with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 equal sized modules, RocksDB version 6.19.3
SHaMBa-eq with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: 2 equal sized modules, RocksDB version 6.19.3

Graphs:

- **RocksDB**
- **SHaMBa-eq**
- **SHaMBa-eq-P**
- **SHaMBa-eq-F**

Latency (ms) vs Memory budget (%):

- **All empty**
- **Half empty**
- **All non-empty**

155
SHaMBa-eq with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 equal sized modules, RocksDB version 6.19.3

SHaMBa-eq accelerates point lookups
SHaMBa-prop with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 proportional sized modules, RocksDB version 6.19.3
SHaMBa-prop with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: 2 proportional sized modules, RocksDB version 6.19.3

![Graphs showing latency vs. memory budget for different SHaMBa-prop configurations.](image)

- **RocksDB**
- **SHaMBa-prop**
- **SHaMBa-prop-P**
- **SHaMBa-prop-F**

Legend:
- All empty
- Half empty
- All non-empty

Notation:
- 10 : 90
Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: 2 proportional sized modules, RocksDB version 6.19.3

SHaMBa-prop with RocksDB

- **RocksDB**
- **SHaMBa-prop**
- **SHaMBa-prop-P**
- **SHaMBa-prop-F**
SHaMBa-prop with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 proportional sized modules, RocksDB version 6.19.3

![Graph showing latency vs memory budget for SHaMBa-prop with RocksDB](image)
SHaMBa-prop with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 proportional sized modules, RocksDB version 6.19.3
SHaMBa-prop with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: 2 proportional sized modules, RocksDB version 6.19.3

SHaMBa-prop accelerates point lookups
SHaMBa on various Devices

Workload: Uniform, Entry size: 64B, #Entries: 30K
Tuning: 2 equal sized modules, RocksDB version 6.19.3
SHaMBa on various Devices

Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: 2 equal sized modules, RocksDB version 6.19.3

SHaMBa also benefits faster storage devices.
SHaMBa with larger index

Workload: Uniform (all empty), **Entry size:** 128B, **#Entries:** 30K

Tuning: 2 equal sized modules, RocksDB version 6.19.3

Memory Budget
- 10%
- 40%
- 70%
- 100%
- 150%

Key size (Index size ÷ Filter size):
- 8B (0.2×)
- 32B (0.8×)
- 64B (1.6×)
- 96B (2.4×)
- 124B (3.1×)

Speedup:
- Larger filter
- Larger index

165
SHaMBa with larger index

Workload: Uniform (all empty), **Entry size:** 128B, **#Entries:** 30K

Tuning: 2 equal sized modules, RocksDB version 6.19.3
SHaMBa with larger index

Workload: Uniform (all empty), Entry size: 128B, #Entries: 30K
Tuning: 2 equal sized modules, RocksDB version 6.19.3
SHaMBa with larger index

Workload: Uniform (all empty), **Entry size:** 128B, **#Entries:** 30K

Tuning: 2 equal sized modules, RocksDB version 6.19.3
SHaMBa with larger index

Workload: Uniform (all empty), **Entry size:** 128B, Entries: 30K

Tuning: 2 equal sized modules, RocksDB version 6.19.3
SHaMBa with larger index

Workload: Uniform (all empty), **Entry size:** 128B, #Entries: 30K

Tuning: 2 equal sized modules, RocksDB version 6.19.3

SHaMBa performs best when filters are larger than indexes
Conclusion
Conclusion

- Modular Bloom filters (MBFs)
 - a BF variant that consists of multiple module
 - enable smooth navigation of the memory vs. performance trade-off
Conclusion

- Modular Bloom filters (MBFs)
 - a BF variant that consists of multiple module
 - enable smooth navigation of the memory vs. performance trade-off

- SHaMBa
 - a novel LSM-based key-value engine
 - specifically addresses performance loss due to memory pressure
Conclusion

- Modular Bloom filters (MBFs)
 - A BF variant that consists of multiple module
 - Enable smooth navigation of the memory vs. performance trade-off

- SHaMBa
 - A novel LSM-based key-value engine
 - Specifically addresses performance loss due to memory pressure
 - The same average number of I/Os, with 1/3 of the memory by the state of the art
Conclusion

- Modular Bloom filters (MBFs)
 - a BF variant that consists of multiple module
 - enable smooth navigation of the memory vs. performance trade-off

- SHaMBa
 - a novel LSM-based key-value engine
 - specifically addresses performance loss due to memory pressure
 - the same average number of I/Os, with 1/3 of the memory by the state of the art

Thank you!